IE424 Operational Strategic PlanningIstanbul Okan UniversityDegree Programs Automotive Engineering (English)General Information For StudentsDiploma SupplementErasmus Policy StatementNational Qualifications
Automotive Engineering (English)
Bachelor TR-NQF-HE: Level 6 QF-EHEA: First Cycle EQF-LLL: Level 6

General course introduction information

Course Code: IE424
Course Name: Operational Strategic Planning
Course Semester: Fall
Course Credits:
Theoretical Practical Credit ECTS
3 0 3 5
Language of instruction: EN
Course Requisites:
Does the Course Require Work Experience?: No
Type of course: Compulsory
Course Level:
Bachelor TR-NQF-HE:6. Master`s Degree QF-EHEA:First Cycle EQF-LLL:6. Master`s Degree
Mode of Delivery: Face to face
Course Coordinator : Ar.Gör. AHMET SELÇUK YALÇIN
Course Lecturer(s): Dr.Öğr.Üyesi MEHMET TEVFİK ÇOBANOĞLU
Dr.Öğr.Üyesi UĞUR TARIK ÖZKUT
Course Assistants:

Course Objective and Content

Course Objectives: I. Transferring culture of strategic thinking and strategic act
II. Creating the consciousness of strategic management process
III. Instructing the strategic management methods
Course Content: Transferring culture of strategic thinking and strategic act. Creation the consciousness of strategic management process. Instructing the strategic management methods.

Learning Outcomes

The students who have succeeded in this course;
Learning Outcomes
1 - Knowledge
Theoretical - Conceptual
1) Apprehend the philosophy of strategic management, its related concepts
2) Understand the strategic management process and its concepts
3) Understand fundamental strategies that an enterprise can apply
4) Learn how to produce strategy by using various methods with the analysis of the internal and external environment of organization
5) Learn strategies (enterprise, competition, functional) that an organization can follow
2 - Skills
Cognitive - Practical
3 - Competences
Communication and Social Competence
Learning Competence
Field Specific Competence
Competence to Work Independently and Take Responsibility

Lesson Plan

Week Subject Related Preparation
1) • Define Management and Strategy concepts • Explain the need for strategy • Explain the importance of strategic planning Lecture notes
2) * Product-Life Cycle * Economies of Scale * Economies of Scope * Competitive Advantage * Strategic Management Lecture notes
3) *Strategy Formulation *Mission *Vision *Value analysis *Organizational Culture *SWOT Analysis Lecture notes
4) *Corporate Strategies *Business Strategies *Functional Strategies Lecture notes
5) *Porter's 5 Strategic Forces *Porter's Generic Strategies Matrix *Case Study Lecture notes
6) *BCG Matrix *Case Study Lecture notes
7) Midterm exam Exam questions
8) Growth, Stability and Defense Strategies Lecture notes
9) *GE Matrix *Ansoff's Matrix *Case study Lecture notes
10) *Forward-Bacward Integration Strategies *Case Studies Lecture notes
11) Scenario Planning Lecture notes
12) Group Decision Making methods Lecture notes
13) Group Decision Making Methods-continued Lecture notes
14) Multi-Criteria Strategic Decision Making Methods Lecture notes

Sources

Course Notes / Textbooks: Lecture notes
References: I. Rowe, A.J., Masor, R.O., Dickelh, K.E., Snyder, N.H. (1989), “Strategic Management”, Addision-Wesley Pub.Co.
II. Hitt, M.A., Duanre, R., Ireland, Hoskisson, R.E. (1999), “Strategic Management”, South Western College Pub.

Course-Program Learning Outcome Relationship

Learning Outcomes

1

2

3

4

5

Program Outcomes
1) Sufficient knowledge in mathematics, science and engineering related to their branches; and the ability to apply theoretical and practical knowledge in these areas to model and solve engineering problems.
2) The ability to identify, formulate, and solve complex engineering problems; selecting and applying appropriate analysis and modeling methods for this purpose.
3) The ability to design a complex system, process, device or product under realistic constraints and conditions to meet specific requirements; the ability to apply modern design methods for this purpose. (Realistic constraints and conditions include such issues as economy, environmental issues, sustainability, manufacturability, ethics, health, safety, social and political issues, according to the nature of design.)
4) Ability to develop, select and use modern techniques and tools necessary for engineering applications; ability to use information technologies effectively.
5) Ability to design experiments, conduct experiments, collect data, analyze and interpret results to examine engineering problems or discipline-specific research topics.
6) The ability to work effectively in disciplinary and multidisciplinary teams; individual work skill.
7) Effective communication skills in Turkish oral and written communication; at least one foreign language knowledge; ability to write effective reports and understand written reports, to prepare design and production reports, to make effective presentations, to give and receive clear and understandable instructions.
8) Awareness of the need for lifelong learning; access to knowledge, ability to follow developments in science and technology, and constant self-renewal.
9) Conform to ethical principles, and standards of professional and ethical responsibility; be informed about the standards used in engineering applications.
10) Awareness of applications in business, such as project management, risk management and change management; awareness of entrepreneurship, and innovation; information about sustainable development.
11) Information about the universal and social health, environmental and safety effects of engineering applications and the ways in which contemporary problems are reflected in the engineering field; awareness of the legal consequences of engineering solutions.
12) Knowledge on advanced calculus, including differential equations applicable to automotive engineering; familiarity with statistics and linear algebra; knowledge on chemistry, calculus-based physics, dynamics, structural mechanics, structure and properties of materials, fluid dynamics, heat transfer, manufacturing processes, electronics and control, design of vehicle elements, vehicle dynamics, vehicle power train systems, automotive related regulations and vehicle validation/verification tests; ability to integrate and apply this knowledge to solve multidisciplinary automotive problems; ability to apply theoretical, experimental and simulation methods and, computer aided design techniques in the field of automotive engineering; ability to work in the field of vehicle design and manufacturing.

Course - Learning Outcome Relationship

No Effect 1 Lowest 2 Low 3 Average 4 High 5 Highest
           
Program Outcomes Level of Contribution
1) Sufficient knowledge in mathematics, science and engineering related to their branches; and the ability to apply theoretical and practical knowledge in these areas to model and solve engineering problems.
2) The ability to identify, formulate, and solve complex engineering problems; selecting and applying appropriate analysis and modeling methods for this purpose.
3) The ability to design a complex system, process, device or product under realistic constraints and conditions to meet specific requirements; the ability to apply modern design methods for this purpose. (Realistic constraints and conditions include such issues as economy, environmental issues, sustainability, manufacturability, ethics, health, safety, social and political issues, according to the nature of design.)
4) Ability to develop, select and use modern techniques and tools necessary for engineering applications; ability to use information technologies effectively.
5) Ability to design experiments, conduct experiments, collect data, analyze and interpret results to examine engineering problems or discipline-specific research topics.
6) The ability to work effectively in disciplinary and multidisciplinary teams; individual work skill.
7) Effective communication skills in Turkish oral and written communication; at least one foreign language knowledge; ability to write effective reports and understand written reports, to prepare design and production reports, to make effective presentations, to give and receive clear and understandable instructions.
8) Awareness of the need for lifelong learning; access to knowledge, ability to follow developments in science and technology, and constant self-renewal.
9) Conform to ethical principles, and standards of professional and ethical responsibility; be informed about the standards used in engineering applications.
10) Awareness of applications in business, such as project management, risk management and change management; awareness of entrepreneurship, and innovation; information about sustainable development.
11) Information about the universal and social health, environmental and safety effects of engineering applications and the ways in which contemporary problems are reflected in the engineering field; awareness of the legal consequences of engineering solutions.
12) Knowledge on advanced calculus, including differential equations applicable to automotive engineering; familiarity with statistics and linear algebra; knowledge on chemistry, calculus-based physics, dynamics, structural mechanics, structure and properties of materials, fluid dynamics, heat transfer, manufacturing processes, electronics and control, design of vehicle elements, vehicle dynamics, vehicle power train systems, automotive related regulations and vehicle validation/verification tests; ability to integrate and apply this knowledge to solve multidisciplinary automotive problems; ability to apply theoretical, experimental and simulation methods and, computer aided design techniques in the field of automotive engineering; ability to work in the field of vehicle design and manufacturing.

Learning Activity and Teaching Methods

Lesson
Case Study

Assessment & Grading Methods and Criteria

Written Exam (Open-ended questions, multiple choice, true-false, matching, fill in the blanks, sequencing)

Assessment & Grading

Semester Requirements Number of Activities Level of Contribution
Midterms 1 % 50
Final 1 % 50
total % 100
PERCENTAGE OF SEMESTER WORK % 50
PERCENTAGE OF FINAL WORK % 50
total % 100

Workload and ECTS Credit Grading

Activities Number of Activities Duration (Hours) Workload
Course Hours 14 3 42
Study Hours Out of Class 14 8 112
Midterms 1 2 2
Final 1 2 2
Total Workload 158