CENG477 Analysis And Design Of Computer SystemsIstanbul Okan UniversityDegree Programs Industrial Engineering (English)General Information For StudentsDiploma SupplementErasmus Policy StatementNational Qualifications
Industrial Engineering (English)
Bachelor TR-NQF-HE: Level 6 QF-EHEA: First Cycle EQF-LLL: Level 6

General course introduction information

Course Code: CENG477
Course Name: Analysis And Design Of Computer Systems
Course Semester: Fall
Course Credits:
Theoretical Practical Credit ECTS
3 0 3 7
Language of instruction: EN
Course Requisites:
Does the Course Require Work Experience?: No
Type of course: Compulsory
Course Level:
Bachelor TR-NQF-HE:6. Master`s Degree QF-EHEA:First Cycle EQF-LLL:6. Master`s Degree
Mode of Delivery: Face to face
Course Coordinator : Prof. Dr. BEKİR TEVFİK AKGÜN
Course Lecturer(s):
Course Assistants:

Course Objective and Content

Course Objectives: The aim of the course is to teach the system concept and to gain the ability of analysis and design of the information system.
Course Content: System Concept and General System Theory / Information System and Information System Types / Information System Development Process / System Analyst Tasks and Capabilities / Preliminary Examination and Feasibility Analysis / System Proposal Preparation and Presentation / System Analysis / System Design / Object Oriented Analysis and Design / System Implementation / Transition to New System

Learning Outcomes

The students who have succeeded in this course;
Learning Outcomes
1 - Knowledge
Theoretical - Conceptual
1) The student knows the concept of system and performs system modeling.
2) Students understand the information system development process.
2 - Skills
Cognitive - Practical
1) Students apply various structural analysis and design techniques.
3 - Competences
Communication and Social Competence
Learning Competence
Field Specific Competence
1) Students learn and train the responsibilities of professional staff in various roles in the IT sector.
Competence to Work Independently and Take Responsibility
1) Students design system solutions to suit the needs of businesses.

Lesson Plan

Week Subject Related Preparation
1) Introduction to System Analysis and Design, System Concept Course Notes
2) Information System and Information System Types, Information System Development Process Course Notes
3) System Analyst Tasks and Capabilities, Preliminary Review and Feasibility Analysis Course Notes
4) Gantt and PERT diagram Course notes
5) System Analysis: Data Collection and Data Modeling Course notes
6) System Design Course notes
7) Object Oriented Analysis and Design Course notes
8) Midterm Exam Course notes
9) Object-Oriented Analysis and Design Course Notes
10) Database Design, System Implementation, CASE Course notes
11) System Design Model Application (Structure Diagram) Course notes
12) New System Migration Process Course notes
13) System Maintenance and Support Course note
14) System Maintenance and Support Course notes
15) Final Exam Course Notes

Sources

Course Notes / Textbooks: SATZINGER - JACKSON – BURD System Analysis and Design, Course Technology
References: KALIPSIZ – BUHARALI – BİRİCİK, Sistem Analizi ve Tasarımı, Papatya Yayıncılık, 2011

Course-Program Learning Outcome Relationship

Learning Outcomes

1

2

3

4

5

Program Outcomes
1) Adequate knowledge in mathematics, science and engineering subjects pertaining to the relevant discipline; ability to use theoretical and applied information in these areas to model and solve engineering problems.
2) Ability to identify, formulate, and solve complex engineering problems; ability to select and apply proper analysis and modelling methods for this purpose.
3) Ability to design a complex system, process, device or product under realistic constraints and conditions, in such a way so as to meet the desired result; ability to apply modern design methods for this purpose. (Realistic constraints and conditions may include factors such as economic and environmental issues, sustainability, manufacturability, ethics, health, safety issues, and social and political issues according to the nature of the design.)
4) Ability to devise, select, and use modern techniques and tools needed for engineering practice; ability to employ information technologies effectively.
5) Ability to design and conduct experiments, gather data, analyse and interpret results for investigating engineering problems.
6) Ability to work efficiently in intra-disciplinary and multi-disciplinary teams; ability to work individually.
7) Ability to communicate effectively i Turkish, both orally and in writing; knowledge of a minimum of one foreign language.
8) Recognition of the need for lifelong learning; ability to access information, to follow developments in science and technology, and to continue to educate him/herself.
9) Awareness of professional and ethical responsibility.
10) Information about business life practices such as project management, risk management, and change management; awareness of entrepreneurship, innovation, and sustainable development.
11) Knowledge about contemporary issues and the global and societal effects of engineering practices on health, environment, and safety; awareness of the legal consequences of engineering solutions.

Course - Learning Outcome Relationship

No Effect 1 Lowest 2 Low 3 Average 4 High 5 Highest
           
Program Outcomes Level of Contribution
1) Adequate knowledge in mathematics, science and engineering subjects pertaining to the relevant discipline; ability to use theoretical and applied information in these areas to model and solve engineering problems.
2) Ability to identify, formulate, and solve complex engineering problems; ability to select and apply proper analysis and modelling methods for this purpose.
3) Ability to design a complex system, process, device or product under realistic constraints and conditions, in such a way so as to meet the desired result; ability to apply modern design methods for this purpose. (Realistic constraints and conditions may include factors such as economic and environmental issues, sustainability, manufacturability, ethics, health, safety issues, and social and political issues according to the nature of the design.)
4) Ability to devise, select, and use modern techniques and tools needed for engineering practice; ability to employ information technologies effectively.
5) Ability to design and conduct experiments, gather data, analyse and interpret results for investigating engineering problems.
6) Ability to work efficiently in intra-disciplinary and multi-disciplinary teams; ability to work individually.
7) Ability to communicate effectively i Turkish, both orally and in writing; knowledge of a minimum of one foreign language.
8) Recognition of the need for lifelong learning; ability to access information, to follow developments in science and technology, and to continue to educate him/herself.
9) Awareness of professional and ethical responsibility.
10) Information about business life practices such as project management, risk management, and change management; awareness of entrepreneurship, innovation, and sustainable development.
11) Knowledge about contemporary issues and the global and societal effects of engineering practices on health, environment, and safety; awareness of the legal consequences of engineering solutions.

Learning Activity and Teaching Methods

Expression
Brainstorming/ Six tihnking hats
Individual study and homework
Lesson
Q&A / Discussion

Assessment & Grading Methods and Criteria

Written Exam (Open-ended questions, multiple choice, true-false, matching, fill in the blanks, sequencing)
Homework

Assessment & Grading

Semester Requirements Number of Activities Level of Contribution
Homework Assignments 1 % 20
Midterms 1 % 30
Final 1 % 50
total % 100
PERCENTAGE OF SEMESTER WORK % 50
PERCENTAGE OF FINAL WORK % 50
total % 100

Workload and ECTS Credit Grading

Activities Number of Activities Duration (Hours) Workload
Course Hours 14 3 42
Study Hours Out of Class 14 3 42
Homework Assignments 1 30 30
Midterms 1 40 40
Final 1 50 50
Total Workload 204