EEE458 Electrical Distribution SystemsIstanbul Okan UniversityDegree Programs Software Engineering (English) General Information For StudentsDiploma SupplementErasmus Policy StatementNational Qualifications
Software Engineering (English)
Bachelor TR-NQF-HE: Level 6 QF-EHEA: First Cycle EQF-LLL: Level 6

General course introduction information

Course Code: EEE458
Course Name: Electrical Distribution Systems
Course Semester: Fall
Course Credits:
Theoretical Practical Credit ECTS
3 0 3 5
Language of instruction: EN
Course Requisites:
Does the Course Require Work Experience?: No
Type of course: Compulsory
Course Level:
Bachelor TR-NQF-HE:6. Master`s Degree QF-EHEA:First Cycle EQF-LLL:6. Master`s Degree
Mode of Delivery: Face to face
Course Coordinator : Assoc. Prof. ÖMER CİHAN KIVANÇ
Course Lecturer(s): Assoc. Prof. ÖMER CİHAN KIVANÇ
Prof. Dr. RAMAZAN NEJAT TUNCAY
Course Assistants:

Course Objective and Content

Course Objectives: The purpose of this course is to introduce following topics: Properties of electrical energy and energy distribution systems. Line constants and calculation methods. Effect of abnormal voltages on apparatus and machines. Fundamentals of line conductor cross-section determinations. Lines loaded from a point. Energy distribution networks. Lines loaded with point loads and their crosssection calculations. Distributed loads and power densities. Cross-section calculations on compact and distributed load lines. Determination of transformation locations, and calculations of powers. Towers, calculation of side-wing forces and determination of tower types. Preparation fundamentals of low voltage energy distribution network projects.
Course Content: Describe the properties of electrical energy and energy distribution systems.
Understand the Line constants and calculation methods, effect of abnormal voltages on apparatus and machines.
Understand the fundamentals of line conductor cross-section determinations and lines loaded from a point, lines loaded with point loads and their cross-section calculations.
Describe energy distribution networks.
Calculate the distributed loads and power densities, Cross-section calculations on compact and distributed load lines.
Determine the transformation locations, and calculations of powers.
Calculate Towers, side-wing forces and determination of tower types.
Prepare fundamentals of low voltage energy distribution network projects.

Learning Outcomes

The students who have succeeded in this course;
Learning Outcomes
1 - Knowledge
Theoretical - Conceptual
1) The Students will be able to select and use the necessary tools for applications.
2 - Skills
Cognitive - Practical
1) The Students will be able to have strong practical ability to apply the knowledge and ability to continually innovating research, analysis and synthesis
3 - Competences
Communication and Social Competence
Learning Competence
Field Specific Competence
Competence to Work Independently and Take Responsibility
1) The Students will be able to have the professional knowledge and ethical responsibility on power distribution

Lesson Plan

Week Subject Related Preparation
1) Introduction to electrical distribution systems Review the Class Notes
2) Fundamental definitions of electrical distribution lines and networks Review the Class Notes
3) Effects of unbalanced operations Review the Class Notes
4) Design and determinations of power system components and effects of their sizing Review the Class Notes
5) Load characteristics and their effects to the network Review the Class Notes
6) Network types Review the Class Notes
7) Design and determinations of power system loads and effects of their sizing Review the Class Notes
8) Power flow within network Review the Class Notes
9) Evaluate students via midterm exam Review the Class Notes
10) Design and determinations of distributed load lines and effects of their sizing Review the Class Notes
11) Transformer load types and effects of transformer’s location on network Review the Class Notes
12) Tower types and force analysis Review the Class Notes
13) Design process and fundamental criteria for low voltage distribution network project Review the Class Notes
14) Analyze and design of example applications Review the Class Notes
15) Final Exam Review the Class Notes

Sources

Course Notes / Textbooks: T. Gönen, “Electric Power Distribution System Engineering”, McGraw-Hill Book Company, 1986.
References: T. A. Short, “Electric Power Distribution Equipment and Systems”, 2006.
Anthony j. Pansini, “Guide to Electrical Power Distribution Systems”, CRC Pres, 2005.
Westinghouse Electric Corporation, “Electric Utility Engineering Reference Book-Distribution Systems”, 1965.

Course-Program Learning Outcome Relationship

Learning Outcomes

1

2

3

Program Outcomes
1) Information on project management and practices in business life such as risk management and change management; awareness about entrepreneurship, innovation and sustainable development.
2) Sufficient knowledge in mathematics, science and engineering related to their branches; the ability to apply theoretical and practical knowledge in these areas to model and solve engineering problems.
3) The ability to identify, formulate, and solve complex engineering problems; selecting and applying appropriate analysis and modeling methods for this purpose.
4) The ability to design a complex system, process, device or product under realistic constraints and conditions to meet specific requirements; the ability to apply modern design methods for this purpose. (Realistic constraints and conditions include such issues as economy, environmental issues, sustainability, manufacturability, ethics, health, safety, social and political issues, according to the nature of design.)
5) Ability to develop, select and use modern techniques and tools necessary for engineering applications; ability to use information technologies effectively.
6) Ability to design experiments, conduct experiments, collect data, analyze and interpret results for examination of engineering problems.
7) Effective communication skills in Turkish oral and written communication; at least one foreign language knowledge.
8) Yaşam boyu öğrenmenin gerekliliği bilinci; bilgiye erişebilme, bilim ve teknolojideki gelişmeleri izleme ve kendini sürekli yenileme becerisi.
9) Professional and ethical responsibility.
10) Information on the effects of engineering applications on health, environment and safety in the universal and social dimensions and the problems of the times; awareness of the legal consequences of engineering solutions.
11) The ability to work effectively in disciplinary and multidisciplinary teams; individual work skill.

Course - Learning Outcome Relationship

No Effect 1 Lowest 2 Low 3 Average 4 High 5 Highest
           
Program Outcomes Level of Contribution
1) Information on project management and practices in business life such as risk management and change management; awareness about entrepreneurship, innovation and sustainable development.
2) Sufficient knowledge in mathematics, science and engineering related to their branches; the ability to apply theoretical and practical knowledge in these areas to model and solve engineering problems.
3) The ability to identify, formulate, and solve complex engineering problems; selecting and applying appropriate analysis and modeling methods for this purpose.
4) The ability to design a complex system, process, device or product under realistic constraints and conditions to meet specific requirements; the ability to apply modern design methods for this purpose. (Realistic constraints and conditions include such issues as economy, environmental issues, sustainability, manufacturability, ethics, health, safety, social and political issues, according to the nature of design.)
5) Ability to develop, select and use modern techniques and tools necessary for engineering applications; ability to use information technologies effectively.
6) Ability to design experiments, conduct experiments, collect data, analyze and interpret results for examination of engineering problems.
7) Effective communication skills in Turkish oral and written communication; at least one foreign language knowledge.
8) Yaşam boyu öğrenmenin gerekliliği bilinci; bilgiye erişebilme, bilim ve teknolojideki gelişmeleri izleme ve kendini sürekli yenileme becerisi.
9) Professional and ethical responsibility.
10) Information on the effects of engineering applications on health, environment and safety in the universal and social dimensions and the problems of the times; awareness of the legal consequences of engineering solutions.
11) The ability to work effectively in disciplinary and multidisciplinary teams; individual work skill.

Learning Activity and Teaching Methods

Expression
Individual study and homework
Lesson
Reading
Homework
Problem Solving
Project preparation
Report Writing
Technical Tour
Application (Modelling, Design, Model, Simulation, Experiment etc.)

Assessment & Grading Methods and Criteria

Written Exam (Open-ended questions, multiple choice, true-false, matching, fill in the blanks, sequencing)
Homework
Application
Individual Project
Presentation
Reporting
Bilgisayar Destekli Sunum

Assessment & Grading

Semester Requirements Number of Activities Level of Contribution
Homework Assignments 1 % 5
Presentation 1 % 5
Project 1 % 5
Midterms 1 % 35
Final 1 % 50
total % 100
PERCENTAGE OF SEMESTER WORK % 50
PERCENTAGE OF FINAL WORK % 50
total % 100

Workload and ECTS Credit Grading

Activities Number of Activities Duration (Hours) Workload
Course Hours 14 3 42
Study Hours Out of Class 14 3 42
Presentations / Seminar 1 2 2
Project 1 30 30
Homework Assignments 2 5 10
Midterms 1 10 10
Final 1 14 14
Total Workload 150