EEE464 RF Electronic CircuitsIstanbul Okan UniversityDegree Programs Industrial EngineeringGeneral Information For StudentsDiploma SupplementErasmus Policy StatementNational Qualifications
Industrial Engineering
Bachelor TR-NQF-HE: Level 6 QF-EHEA: First Cycle EQF-LLL: Level 6

General course introduction information

Course Code: EEE464
Course Name: RF Electronic Circuits
Course Semester: Fall
Course Credits:
Theoretical Practical Credit ECTS
3 0 3 5
Language of instruction: EN
Course Requisites:
Does the Course Require Work Experience?: No
Type of course: Compulsory
Course Level:
Bachelor TR-NQF-HE:6. Master`s Degree QF-EHEA:First Cycle EQF-LLL:6. Master`s Degree
Mode of Delivery: Face to face
Course Coordinator : Dr.Öğr.Üyesi NAZLI CANDAN
Course Lecturer(s): Prof. Dr. İHSAN GÖK
Course Assistants:

Course Objective and Content

Course Objectives: This course introduce the principles, analysis, and design of CMOS Radio frequency (RF) integrated circuits for wireless communication systems. Besides system level design considerations for RFIC, this course also present rule-of-thumbs in designing RF main blocks such as Low-Noise-Amplifier (LNA), mixer, Voltage-Controlled-Oscillator (VCO), and Phase-Locked-Loop (PLL). Students are supposed to understand architectures of RF system and master the keypoint of designing RF circuits. They are also required to design circuits and do simulation with Cadence SpectreRF during lab time. By taking this course, students can make good preparations for their research in relevant areas.
Course Content: RFIC System Overview, Low Noise Amplifiers, Mixers, Voltage-Controlled-Oscillators, Phase-Locked-Loop, Power Amplifiers

Learning Outcomes

The students who have succeeded in this course;
Learning Outcomes
1 - Knowledge
Theoretical - Conceptual
1) An ability to apply knowledge of Mathematics, science, and engineering
2 - Skills
Cognitive - Practical
3 - Competences
Communication and Social Competence
Learning Competence
Field Specific Competence
1) An ability to use the techniques, skills, and modern engineering tools necessary for electrical and computer engineering practice
Competence to Work Independently and Take Responsibility

Lesson Plan

Week Subject Related Preparation
1) Basic Concepts in RF Design None
2) Scattering Parameters None
3) modern IC technologies (SiGe, CMOS), fundamental limitation of speed of transistors None
4) Physics of Noise None
5) Transceiver Architectures: Heterodyne/Direct Conversion Receivers None
6) Transceiver Architectures: Low-IF Receivers, Heterodyne Transmitters None
7) : Impedance Matching, RF Filters None
8) Low Noise Amplifiers None
9) Passive Mixers None
10) Active Mixers None
11) RF Passive Components None
12) Oscillators: Basic Principles, Cross-Coupled, VCO None
13) Silicon-based receivers, Layout consideration, Packaging Issues None
14) PLL None

Sources

Course Notes / Textbooks: RF Microelectronics, 2nd Edition, by Behzad Razavi, Prentice Hall, ISBN: 978-0137134731
References: RF Microelectronics, 2nd Edition, by Behzad Razavi, Prentice Hall, ISBN: 978-0137134731

Course-Program Learning Outcome Relationship

Learning Outcomes

1

2

Program Outcomes
1) Adequate knowledge in mathematics, science and engineering subjects pertaining to the relevant discipline; ability to use theoretical and applied information in these areas to model and solve engineering problems.
2) Ability to identify, formulate, and solve complex engineering problems; ability to select and apply proper analysis and modelling methods for this purpose.
3) Ability to design a complex system, process, device or product under realistic constraints and conditions, in such a way so as to meet the desired result; ability to apply modern design methods for this purpose. (Realistic constraints and conditions may include factors such as economic and environmental issues, sustainability, manufacturability, ethics, health, safety issues, and social and political issues according to the nature of the design.)
4) Ability to devise, select, and use modern techniques and tools needed for engineering practice; ability to employ information technologies effectively.
5) Ability to design and conduct experiments, gather data, analyse and interpret results for investigating engineering problems.
6) Ability to work efficiently in intra-disciplinary and multi-disciplinary teams; ability to work individually.
7) Ability to communicate effectively i Turkish, both orally and in writing; knowledge of a minimum of one foreign language.
8) Recognition of the need for lifelong learning; ability to access information, to follow developments in science and technology, and to continue to educate him/herself.
9) Awareness of professional and ethical responsibility.
10) Information about business life practices such as project management, risk management, and change management; awareness of entrepreneurship, innovation, and sustainable development.
11) Knowledge about contemporary issues and the global and societal effects of engineering practices on health, environment, and safety; awareness of the legal consequences of engineering solutions.

Course - Learning Outcome Relationship

No Effect 1 Lowest 2 Low 3 Average 4 High 5 Highest
           
Program Outcomes Level of Contribution
1) Adequate knowledge in mathematics, science and engineering subjects pertaining to the relevant discipline; ability to use theoretical and applied information in these areas to model and solve engineering problems.
2) Ability to identify, formulate, and solve complex engineering problems; ability to select and apply proper analysis and modelling methods for this purpose.
3) Ability to design a complex system, process, device or product under realistic constraints and conditions, in such a way so as to meet the desired result; ability to apply modern design methods for this purpose. (Realistic constraints and conditions may include factors such as economic and environmental issues, sustainability, manufacturability, ethics, health, safety issues, and social and political issues according to the nature of the design.)
4) Ability to devise, select, and use modern techniques and tools needed for engineering practice; ability to employ information technologies effectively.
5) Ability to design and conduct experiments, gather data, analyse and interpret results for investigating engineering problems.
6) Ability to work efficiently in intra-disciplinary and multi-disciplinary teams; ability to work individually.
7) Ability to communicate effectively i Turkish, both orally and in writing; knowledge of a minimum of one foreign language.
8) Recognition of the need for lifelong learning; ability to access information, to follow developments in science and technology, and to continue to educate him/herself.
9) Awareness of professional and ethical responsibility.
10) Information about business life practices such as project management, risk management, and change management; awareness of entrepreneurship, innovation, and sustainable development.
11) Knowledge about contemporary issues and the global and societal effects of engineering practices on health, environment, and safety; awareness of the legal consequences of engineering solutions.

Learning Activity and Teaching Methods

Lesson
Homework
Problem Solving
Project preparation
Report Writing

Assessment & Grading Methods and Criteria

Written Exam (Open-ended questions, multiple choice, true-false, matching, fill in the blanks, sequencing)
Homework
Presentation

Assessment & Grading

Semester Requirements Number of Activities Level of Contribution
Attendance 42 % 0
Project 1 % 30
Midterms 1 % 30
Final 1 % 40
total % 100
PERCENTAGE OF SEMESTER WORK % 60
PERCENTAGE OF FINAL WORK % 40
total % 100

Workload and ECTS Credit Grading

Activities Number of Activities Duration (Hours) Workload
Course Hours 14 3 42
Project 1 24 24
Homework Assignments 2 16 32
Midterms 1 16 16
Final 1 24 24
Total Workload 138