MATH265 Probability & Statistics IIstanbul Okan UniversityDegree Programs Food Engineering (English)General Information For StudentsDiploma SupplementErasmus Policy StatementNational Qualifications
Food Engineering (English)
Bachelor TR-NQF-HE: Level 6 QF-EHEA: First Cycle EQF-LLL: Level 6

General course introduction information

Course Code: MATH265
Course Name: Probability & Statistics I
Course Semester: Fall
Course Credits:
Theoretical Practical Credit ECTS
3 0 3 5
Language of instruction: EN
Course Requisites:
Does the Course Require Work Experience?: No
Type of course: Compulsory
Course Level:
Bachelor TR-NQF-HE:6. Master`s Degree QF-EHEA:First Cycle EQF-LLL:6. Master`s Degree
Mode of Delivery: Face to face
Course Coordinator : Dr.Öğr.Üyesi MESERET TUBA GÜLPINAR
Course Lecturer(s): Dr.Öğr.Üyesi ASUMAN ÖZER
Course Assistants:

Course Objective and Content

Course Objectives: The aim of the course is to gain basic knowledge and abilities to the students about Combinatorial methods; product rule, permutation, combination. Probability; probability axioms, conditional probability, Bayes formula. Random variable; distribution function, probability function, Chebyshev inequality. Discrete and continuous distributions; uniform, Bernoulli, Poisson, geometric, hypergeometric, normal, exponential, gamma and beta distributions. Generating functions.
Course Content: Combinatorial methods; product rule, permutation, combination. Probability; probability axioms, conditional probability, Bayes formula. Random variable; distribution function, probability function, Chebyshev inequality. Discrete and continuous distributions; uniform, Bernoulli, Poisson, geometric, hypergeometric, normal, exponential, gamma and beta distributions. Generating functions.

Learning Outcomes

The students who have succeeded in this course;
Learning Outcomes
1 - Knowledge
Theoretical - Conceptual
1) Solve engineering problems using probability theory.
2) Solve engineering problems using statistics.
3) Formulate probabilistic and statistical models of real life problems.
2 - Skills
Cognitive - Practical
3 - Competences
Communication and Social Competence
Learning Competence
Field Specific Competence
Competence to Work Independently and Take Responsibility

Lesson Plan

Week Subject Related Preparation
1) Set Theory, Random Variable, Sample Space, Important Theorems on Probability, Conditional Probability, Bayes’ Theorem, Tree Diagrams, Permutations, Combinations, Binomial Coefficients, Stirlings Approximation,Discrete and Continuous Probability Distributions, Mathematical Expectation,Variance and Standard Deviation, Joint Distributions, Normal , Binomial, Poisson, Multinomial, Hypergeometric etc. Distributions Bulunmamaktadır.

Sources

Course Notes / Textbooks: Probability and Statistics for Engineers and Scientists, Ronald E. Walpole, Raymond H. Myers, Sharon L. Myers, Keying Ye, Pearson Ed.
ISBN 13: 978-0-321-62911-1
References: Lecture Notes- Ders notları

Course-Program Learning Outcome Relationship

Learning Outcomes

1

2

3

Program Outcomes
1) Has sufficient background in mathematics, science and engineering related fields.
2) Uses the theoretical and practical knowledge in mathematics, science and their fields together for engineering solutions.
3) Identifies, formulates and solves engineering problems, selects and applies appropriate analytical methods and modeling techniques for this purpose.
4) Analyze a system, system component or process and design it under realistic constraints to meet desired requirements; apply modern design methods accordingly.
5) Selects and uses the modern techniques and tools necessary for engineering applications.
6) Design experiments, conduct experiments, collect data, analyze and interpret results.
7) Works individually and in multi-disciplinary teams.
8) Accesses information and conducts resource research for this purpose, uses databases and other information sources.
9) Accesses information and conducts resource research for this purpose, uses databases and other information sources.
10) Accesses information and conducts resource research for this purpose, uses databases and other information sources.
11) Uses the theoretical and practical knowledge in mathematics, science and their fields together for engineering solutions.
12) Identifies, formulates and solves engineering problems, selects and applies appropriate analytical methods and modeling techniques for this purpose.
13) Analyze a system, system component or process and design it under realistic constraints to meet desired requirements; apply modern design methods accordingly.
14) Selects and uses the modern techniques and tools necessary for engineering applications.
15) Works individually and in multi-disciplinary teams
16) Uses information and communication technologies together with computer software required by the field at least Advanced Level of European Computer Skills License.
17) Communicate effectively verbally and in writing; use a foreign language at least at level B1 of the European Language Portfolio.
18) Communicates using technical drawing.
19) Accesses information and conducts resource research for this purpose, uses databases and other information sources.
20) Becomes aware of the universal and social effects of engineering solutions and applications; entrepreneurship and innovation and have knowledge about the problems of the age.
21) Has professional and ethical responsibility.
22) Have awareness of project management, workplace practices, employee health, environmental and occupational safety; the legal consequences of engineering applications.
23) Demonstrates awareness of the universal and social impact of engineering solutions and applications; is aware of entrepreneurship and innovation and has knowledge about the problems of the age.

Course - Learning Outcome Relationship

No Effect 1 Lowest 2 Low 3 Average 4 High 5 Highest
           
Program Outcomes Level of Contribution
1) Has sufficient background in mathematics, science and engineering related fields. 5
2) Uses the theoretical and practical knowledge in mathematics, science and their fields together for engineering solutions. 5
3) Identifies, formulates and solves engineering problems, selects and applies appropriate analytical methods and modeling techniques for this purpose. 5
4) Analyze a system, system component or process and design it under realistic constraints to meet desired requirements; apply modern design methods accordingly. 5
5) Selects and uses the modern techniques and tools necessary for engineering applications. 5
6) Design experiments, conduct experiments, collect data, analyze and interpret results. 4
7) Works individually and in multi-disciplinary teams. 5
8) Accesses information and conducts resource research for this purpose, uses databases and other information sources. 4
9) Accesses information and conducts resource research for this purpose, uses databases and other information sources. 5
10) Accesses information and conducts resource research for this purpose, uses databases and other information sources. 4
11) Uses the theoretical and practical knowledge in mathematics, science and their fields together for engineering solutions. 5
12) Identifies, formulates and solves engineering problems, selects and applies appropriate analytical methods and modeling techniques for this purpose. 4
13) Analyze a system, system component or process and design it under realistic constraints to meet desired requirements; apply modern design methods accordingly. 5
14) Selects and uses the modern techniques and tools necessary for engineering applications. 4
15) Works individually and in multi-disciplinary teams 5
16) Uses information and communication technologies together with computer software required by the field at least Advanced Level of European Computer Skills License. 4
17) Communicate effectively verbally and in writing; use a foreign language at least at level B1 of the European Language Portfolio. 5
18) Communicates using technical drawing.
19) Accesses information and conducts resource research for this purpose, uses databases and other information sources.
20) Becomes aware of the universal and social effects of engineering solutions and applications; entrepreneurship and innovation and have knowledge about the problems of the age.
21) Has professional and ethical responsibility.
22) Have awareness of project management, workplace practices, employee health, environmental and occupational safety; the legal consequences of engineering applications.
23) Demonstrates awareness of the universal and social impact of engineering solutions and applications; is aware of entrepreneurship and innovation and has knowledge about the problems of the age.

Learning Activity and Teaching Methods

Lesson
Reading
Problem Solving
Q&A / Discussion

Assessment & Grading Methods and Criteria

Written Exam (Open-ended questions, multiple choice, true-false, matching, fill in the blanks, sequencing)

Assessment & Grading

Semester Requirements Number of Activities Level of Contribution
Midterms 2 % 50
Final 1 % 50
total % 100
PERCENTAGE OF SEMESTER WORK % 50
PERCENTAGE OF FINAL WORK % 50
total % 100

Workload and ECTS Credit Grading

Activities Number of Activities Duration (Hours) Workload
Course Hours 15 3 45
Study Hours Out of Class 15 3 45
Midterms 2 15 30
Final 1 20 20
Total Workload 140