BBA222 Entrepreneurship ApplicationsIstanbul Okan UniversityDegree Programs Civil Engineering (English)General Information For StudentsDiploma SupplementErasmus Policy StatementNational Qualifications
Civil Engineering (English)
Bachelor TR-NQF-HE: Level 6 QF-EHEA: First Cycle EQF-LLL: Level 6

General course introduction information

Course Code: BBA222
Course Name: Entrepreneurship Applications
Course Semester: Spring
Course Credits:
Theoretical Practical Credit ECTS
2 0 2 3
Language of instruction: EN
Course Requisites:
Does the Course Require Work Experience?: No
Type of course:
Course Level:
Bachelor TR-NQF-HE:6. Master`s Degree QF-EHEA:First Cycle EQF-LLL:6. Master`s Degree
Mode of Delivery: E-Learning
Course Coordinator : Assoc. Prof. MEHMET KABASAKAL
Course Lecturer(s): Dr.Öğr.Üyesi FATMA SEBLA UZUNTEPE
Assoc. Prof. MEHMET KABASAKAL
Course Assistants:

Course Objective and Content

Course Objectives: The aim of the course is to inform students about successful role models by enlightening students in the field of entrepreneurship.
Course Content: Examples from entrepreneurial successes; role models; development of an entrepreneurial culture and awareness; entrepreneurial eco-system; entrepreneurial finance.

Learning Outcomes

The students who have succeeded in this course;
Learning Outcomes
1 - Knowledge
Theoretical - Conceptual
2 - Skills
Cognitive - Practical
3 - Competences
Communication and Social Competence
Learning Competence
1) Students would have idea of the basic issues of entrepreneurship such as strategic management, innovation, human recourse management, business plan.
Field Specific Competence
1) Students would be familiar with the concept of entrepreneurship.
Competence to Work Independently and Take Responsibility

Lesson Plan

Week Subject Related Preparation
1) Introduction None
2) What is the entrepreneurship? What are major characteristics of entrepreneurs? None
3) Successful entrepreneurs: Bekir Okan None
4) Successful entrepreneurs: None
5) Successful Entrepreneurs: Yok
6) Successful Entrepreneurs: None
7) Successful Entrepreneurs: None
8) Successful Entrepreneurs: None
9) Successful Entrepreneurs: None
10) Successful Entrepreneurs: None
11) Successful Entrepreneurs: none
12) Successful Entrepreneurs: None
13) Human resource management for Entrepreneurs: None
14) Business plan none
15) Final exam Review of lecture notes.

Sources

Course Notes / Textbooks: yok
References: yok

Course-Program Learning Outcome Relationship

Learning Outcomes

1

1

Program Outcomes
1) Adequate knowledge in mathematics, science and engineering subjects pertaining to the relevant discipline; ability to use theoretical and applied information in these areas to model and solve engineering problems.
2) Ability to identify, formulate, and solve complex engineering problems; ability to select and apply proper analysis and modelling methods for this purpose.
3) Ability to design a complex system, process, device or product under realistic constraints and conditions, in such a way so as to meet the desired result; ability to apply modern design methods for this purpose. (Realistic constraints and conditions may include factors such as economic and environmental issues, sustainability, manufacturability, ethics, health, safety issues, and social and political issues according to the nature of the design.)
4) Ability to select and use modern techniques and tools needed for analyzing and solving complex problems encountered in engineering practice; ability to employ information technologies effectively.
5) Ability to design and conduct experiments, gather data, analyze and interpret results for investigating complex engineering problems or discipline specific research questions.
6) Ability to work efficiently in intra-disciplinary and multi-disciplinary teams; ability to work individually.
7) Ability to communicate effectively, both orally and in writing; knowledge of a minimum of one foreign language; ability to write effective reports and comprehend written reports, prepare design and production reports, make effective presentations, and give and receive clear and intelligible instructions.
8) Recognition of the need for lifelong learning; ability to access information, to follow developments in science and technology, and to continue to educate him/herself.
9) Knowledge on behavior according ethical principles, professional and ethical responsibility and standards used in engineering practices.
10) Knowledge about business life practices such as project management, risk management, and change management; awareness in entrepreneurship, innovation; knowledge about sustainable development.
11) Knowledge about contemporary issues and the global and societal effects of engineering practices on health, environment, and safety; awareness of the legal consequences of engineering solutions.

Course - Learning Outcome Relationship

No Effect 1 Lowest 2 Low 3 Average 4 High 5 Highest
           
Program Outcomes Level of Contribution
1) Adequate knowledge in mathematics, science and engineering subjects pertaining to the relevant discipline; ability to use theoretical and applied information in these areas to model and solve engineering problems.
2) Ability to identify, formulate, and solve complex engineering problems; ability to select and apply proper analysis and modelling methods for this purpose.
3) Ability to design a complex system, process, device or product under realistic constraints and conditions, in such a way so as to meet the desired result; ability to apply modern design methods for this purpose. (Realistic constraints and conditions may include factors such as economic and environmental issues, sustainability, manufacturability, ethics, health, safety issues, and social and political issues according to the nature of the design.)
4) Ability to select and use modern techniques and tools needed for analyzing and solving complex problems encountered in engineering practice; ability to employ information technologies effectively.
5) Ability to design and conduct experiments, gather data, analyze and interpret results for investigating complex engineering problems or discipline specific research questions.
6) Ability to work efficiently in intra-disciplinary and multi-disciplinary teams; ability to work individually.
7) Ability to communicate effectively, both orally and in writing; knowledge of a minimum of one foreign language; ability to write effective reports and comprehend written reports, prepare design and production reports, make effective presentations, and give and receive clear and intelligible instructions.
8) Recognition of the need for lifelong learning; ability to access information, to follow developments in science and technology, and to continue to educate him/herself.
9) Knowledge on behavior according ethical principles, professional and ethical responsibility and standards used in engineering practices.
10) Knowledge about business life practices such as project management, risk management, and change management; awareness in entrepreneurship, innovation; knowledge about sustainable development.
11) Knowledge about contemporary issues and the global and societal effects of engineering practices on health, environment, and safety; awareness of the legal consequences of engineering solutions. 1

Learning Activity and Teaching Methods

Field Study
Peer Review
Expression
Brainstorming/ Six tihnking hats
Individual study and homework

Assessment & Grading Methods and Criteria

Written Exam (Open-ended questions, multiple choice, true-false, matching, fill in the blanks, sequencing)
Oral Examination
Homework
Application

Assessment & Grading

Semester Requirements Number of Activities Level of Contribution
Midterms 1 % 40
Final 1 % 60
total % 100
PERCENTAGE OF SEMESTER WORK % 40
PERCENTAGE OF FINAL WORK % 60
total % 100

Workload and ECTS Credit Grading

Activities Number of Activities Workload
Course Hours 16 32
Application 16 32
Midterms 16 80
Final 2 30
Total Workload 174