Civil Engineering (English) | |||||
Bachelor | TR-NQF-HE: Level 6 | QF-EHEA: First Cycle | EQF-LLL: Level 6 |
Course Code: | CE468 | ||||||||
Course Name: | Reinforced Concrete Project Design | ||||||||
Course Semester: | Fall | ||||||||
Course Credits: |
|
||||||||
Language of instruction: | EN | ||||||||
Course Requisites: | |||||||||
Does the Course Require Work Experience?: | No | ||||||||
Type of course: | Department Elective | ||||||||
Course Level: |
|
||||||||
Mode of Delivery: | Face to face | ||||||||
Course Coordinator : | Dr.Öğr.Üyesi ONUR GEDİK | ||||||||
Course Lecturer(s): | |||||||||
Course Assistants: |
Course Objectives: | At the end of this course students will be able to: Define preliminary design of structural system starting from architectural drawings, Execute earthquake load calculation for different building types for different types of building use, Identify irregularities, Design the building structure against earthquake, by using the available national earthquake code. |
Course Content: | Introduction to Earthquake Resistant Design of reinforced concrete building structures. The Earthquake action and its effect on buildings. Introduction to earthquake codes, in particular to the Turkish Earthquake Code (TEC). Architectural systems and the load bearing (gravity and seismic) systems. Frame systems, wall and frame systems. Wall only systems. The clauses referring to the different systems in the TEC, and differences or similarities for the modelling and analysis. Calculation of earthquake load by considering the design aspects of the TEC. Definition of the importance factor, the contribution of the live load to the earthquake mass, spectral loads, center of gravity. Distribution of the earthquake load over the height of the building structure. Effect of irregularities on the calculation of earthquake loads. Amplification factors for certain irregularities. |
The students who have succeeded in this course;
|
Week | Subject | Related Preparation |
9) | MIDTERM | - |
15) | FINAL | - |
Course Notes / Textbooks: | Design of Concrete Structures - Arthur H. Nilson, George Winter TS-500 Turkish Standards for the Design of Concrete Structures Deprem Bölgelerinde Yapılacak Yapılar Hakkında Yönetmelik – 2007 |
References: | Başka kaynak önerilmemektedir. |
Learning Outcomes | 1 |
3 |
2 |
4 |
||||||
---|---|---|---|---|---|---|---|---|---|---|
Program Outcomes | ||||||||||
1) Adequate knowledge in mathematics, science and engineering subjects pertaining to the relevant discipline; ability to use theoretical and applied information in these areas to model and solve engineering problems. | ||||||||||
2) Ability to identify, formulate, and solve complex engineering problems; ability to select and apply proper analysis and modelling methods for this purpose. | ||||||||||
3) Ability to design a complex system, process, device or product under realistic constraints and conditions, in such a way so as to meet the desired result; ability to apply modern design methods for this purpose. (Realistic constraints and conditions may include factors such as economic and environmental issues, sustainability, manufacturability, ethics, health, safety issues, and social and political issues according to the nature of the design.) | ||||||||||
4) Ability to select and use modern techniques and tools needed for analyzing and solving complex problems encountered in engineering practice; ability to employ information technologies effectively. | ||||||||||
5) Ability to design and conduct experiments, gather data, analyze and interpret results for investigating complex engineering problems or discipline specific research questions. | ||||||||||
6) Ability to work efficiently in intra-disciplinary and multi-disciplinary teams; ability to work individually. | ||||||||||
7) Ability to communicate effectively, both orally and in writing; knowledge of a minimum of one foreign language; ability to write effective reports and comprehend written reports, prepare design and production reports, make effective presentations, and give and receive clear and intelligible instructions. | ||||||||||
8) Recognition of the need for lifelong learning; ability to access information, to follow developments in science and technology, and to continue to educate him/herself. | ||||||||||
9) Knowledge on behavior according ethical principles, professional and ethical responsibility and standards used in engineering practices. | ||||||||||
10) Knowledge about business life practices such as project management, risk management, and change management; awareness in entrepreneurship, innovation; knowledge about sustainable development. | ||||||||||
11) Knowledge about contemporary issues and the global and societal effects of engineering practices on health, environment, and safety; awareness of the legal consequences of engineering solutions. |
No Effect | 1 Lowest | 2 Low | 3 Average | 4 High | 5 Highest |
Program Outcomes | Level of Contribution | |
1) | Adequate knowledge in mathematics, science and engineering subjects pertaining to the relevant discipline; ability to use theoretical and applied information in these areas to model and solve engineering problems. | |
2) | Ability to identify, formulate, and solve complex engineering problems; ability to select and apply proper analysis and modelling methods for this purpose. | |
3) | Ability to design a complex system, process, device or product under realistic constraints and conditions, in such a way so as to meet the desired result; ability to apply modern design methods for this purpose. (Realistic constraints and conditions may include factors such as economic and environmental issues, sustainability, manufacturability, ethics, health, safety issues, and social and political issues according to the nature of the design.) | |
4) | Ability to select and use modern techniques and tools needed for analyzing and solving complex problems encountered in engineering practice; ability to employ information technologies effectively. | |
5) | Ability to design and conduct experiments, gather data, analyze and interpret results for investigating complex engineering problems or discipline specific research questions. | |
6) | Ability to work efficiently in intra-disciplinary and multi-disciplinary teams; ability to work individually. | |
7) | Ability to communicate effectively, both orally and in writing; knowledge of a minimum of one foreign language; ability to write effective reports and comprehend written reports, prepare design and production reports, make effective presentations, and give and receive clear and intelligible instructions. | |
8) | Recognition of the need for lifelong learning; ability to access information, to follow developments in science and technology, and to continue to educate him/herself. | |
9) | Knowledge on behavior according ethical principles, professional and ethical responsibility and standards used in engineering practices. | |
10) | Knowledge about business life practices such as project management, risk management, and change management; awareness in entrepreneurship, innovation; knowledge about sustainable development. | |
11) | Knowledge about contemporary issues and the global and societal effects of engineering practices on health, environment, and safety; awareness of the legal consequences of engineering solutions. |
Expression | |
Lesson |
Written Exam (Open-ended questions, multiple choice, true-false, matching, fill in the blanks, sequencing) |
Semester Requirements | Number of Activities | Level of Contribution |
Midterms | 1 | % 40 |
Final | 1 | % 60 |
total | % 100 | |
PERCENTAGE OF SEMESTER WORK | % 40 | |
PERCENTAGE OF FINAL WORK | % 60 | |
total | % 100 |
Activities | Number of Activities | Duration (Hours) | Workload |
Course Hours | 14 | 3 | 42 |
Study Hours Out of Class | 14 | 7 | 98 |
Midterms | 1 | 2 | 2 |
Final | 1 | 2 | 2 |
Total Workload | 144 |