PSY366 Reading Skills in Psychology IIIstanbul Okan UniversityDegree Programs Automotive Engineering (English)General Information For StudentsDiploma SupplementErasmus Policy StatementNational Qualifications
Automotive Engineering (English)
Bachelor TR-NQF-HE: Level 6 QF-EHEA: First Cycle EQF-LLL: Level 6

General course introduction information

Course Code: PSY366
Course Name: Reading Skills in Psychology II
Course Semester: Spring
Course Credits:
Theoretical Practical Credit ECTS
3 0 3 6
Language of instruction: EN
Course Requisites:
Does the Course Require Work Experience?: No
Type of course: University Elective
Course Level:
Bachelor TR-NQF-HE:6. Master`s Degree QF-EHEA:First Cycle EQF-LLL:6. Master`s Degree
Mode of Delivery: Face to face
Course Coordinator : Öğr.Gör. MUAZZEZ IŞIL ESENDİR
Course Lecturer(s): Öğr.Gör. MUAZZEZ IŞIL ESENDİR
Öğr.Gör. MELDA ENGİNSU
Course Assistants:

Course Objective and Content

Course Objectives: It is aimed to develop students' research, academic writing and speaking skills. Quoting in academic language is also intended to expand and support the basic research and writing techniques they have learned previously, including summarizing with translations of the citation into their own words.
Course Content: Students are guided in the structure of the official report and in the correct use of headings and subheadings. It tries to gain the ability to make source analysis and interpret information correctly, especially for studies that require research. In addition to writing studies, it also aims to improve speaking skills through presentations and oral studies in the course. At the end of the course, students are expected to be able to conduct research through writing and oral transfer.

Learning Outcomes

The students who have succeeded in this course;
Learning Outcomes
1 - Knowledge
Theoretical - Conceptual
1) Understanding and using the standards and academic ethical principles of the APA publication guidelines
2) Understanding and using psychology terminology
3) Advanced academic reading, writing and speaking skills
2 - Skills
Cognitive - Practical
3 - Competences
Communication and Social Competence
Learning Competence
Field Specific Competence
Competence to Work Independently and Take Responsibility

Lesson Plan

Week Subject Related Preparation
1) Introduction to the course. academic vocabulary test Lecturer notes and related articles
2) APA style writing I review Written assignment: Theoretical approaches in psychology (Showing the citation in the text) Lecturer notes and related articles
3) Discussion: Cognitive psychology – classroom exercises. 2. Written assignment: Research report Lecturer notes and related articles
4) 3. Written assignment: Behavioral psychology – Submission (Showing the citation in the text) Lecturer notes and related articles
5) 4. Written assignment: Clinical psychology – Phobias 1. Presentation Lecturer notes and related articles
6) Discussion: Developmental psychology – classroom exercises. Title selection for extended report Lecturer notes and related articles
7) Presentation Lecturer notes and related articles
8) Developmental psychology APA style writing II review Lecturer notes and related articles
9) 5. Written assignment: Social psychology research report Lecturer notes and related articles
10) 6. Written assignment: Social psychology of the media - Presentation 2. Extended report control Lecturer notes and related articles
11) Positive Psychology APA style writing III review Draft for presentation Lecturer notes and related articles
12) Presentation Lecturer notes and related articles
13) Research methods in psychology Extended report draft Lecturer notes and related articles
14) Extended report submission Lecturer notes and related articles
15) Review of the lesson, discussion on various topics Lecturer notes and related articles
16) Final None

Sources

Course Notes / Textbooks: Publication Manual of the American Psychological Association Publisher: American Psychological Association Washington, DC. 6th edition

References: Publication Manual of the American Psychological Association Publisher: American Psychological Association Washington, DC. 6th edition

Course-Program Learning Outcome Relationship

Learning Outcomes

1

2

3

Program Outcomes
1) Sufficient knowledge in mathematics, science and engineering related to their branches; and the ability to apply theoretical and practical knowledge in these areas to model and solve engineering problems.
2) The ability to identify, formulate, and solve complex engineering problems; selecting and applying appropriate analysis and modeling methods for this purpose.
3) The ability to design a complex system, process, device or product under realistic constraints and conditions to meet specific requirements; the ability to apply modern design methods for this purpose. (Realistic constraints and conditions include such issues as economy, environmental issues, sustainability, manufacturability, ethics, health, safety, social and political issues, according to the nature of design.)
4) Ability to develop, select and use modern techniques and tools necessary for engineering applications; ability to use information technologies effectively.
5) Ability to design experiments, conduct experiments, collect data, analyze and interpret results to examine engineering problems or discipline-specific research topics.
6) The ability to work effectively in disciplinary and multidisciplinary teams; individual work skill.
7) Effective communication skills in Turkish oral and written communication; at least one foreign language knowledge; ability to write effective reports and understand written reports, to prepare design and production reports, to make effective presentations, to give and receive clear and understandable instructions.
8) Awareness of the need for lifelong learning; access to knowledge, ability to follow developments in science and technology, and constant self-renewal.
9) Conform to ethical principles, and standards of professional and ethical responsibility; be informed about the standards used in engineering applications.
10) Awareness of applications in business, such as project management, risk management and change management; awareness of entrepreneurship, and innovation; information about sustainable development.
11) Information about the universal and social health, environmental and safety effects of engineering applications and the ways in which contemporary problems are reflected in the engineering field; awareness of the legal consequences of engineering solutions.
12) Knowledge on advanced calculus, including differential equations applicable to automotive engineering; familiarity with statistics and linear algebra; knowledge on chemistry, calculus-based physics, dynamics, structural mechanics, structure and properties of materials, fluid dynamics, heat transfer, manufacturing processes, electronics and control, design of vehicle elements, vehicle dynamics, vehicle power train systems, automotive related regulations and vehicle validation/verification tests; ability to integrate and apply this knowledge to solve multidisciplinary automotive problems; ability to apply theoretical, experimental and simulation methods and, computer aided design techniques in the field of automotive engineering; ability to work in the field of vehicle design and manufacturing.

Course - Learning Outcome Relationship

No Effect 1 Lowest 2 Low 3 Average 4 High 5 Highest
           
Program Outcomes Level of Contribution
1) Sufficient knowledge in mathematics, science and engineering related to their branches; and the ability to apply theoretical and practical knowledge in these areas to model and solve engineering problems.
2) The ability to identify, formulate, and solve complex engineering problems; selecting and applying appropriate analysis and modeling methods for this purpose.
3) The ability to design a complex system, process, device or product under realistic constraints and conditions to meet specific requirements; the ability to apply modern design methods for this purpose. (Realistic constraints and conditions include such issues as economy, environmental issues, sustainability, manufacturability, ethics, health, safety, social and political issues, according to the nature of design.)
4) Ability to develop, select and use modern techniques and tools necessary for engineering applications; ability to use information technologies effectively.
5) Ability to design experiments, conduct experiments, collect data, analyze and interpret results to examine engineering problems or discipline-specific research topics.
6) The ability to work effectively in disciplinary and multidisciplinary teams; individual work skill.
7) Effective communication skills in Turkish oral and written communication; at least one foreign language knowledge; ability to write effective reports and understand written reports, to prepare design and production reports, to make effective presentations, to give and receive clear and understandable instructions.
8) Awareness of the need for lifelong learning; access to knowledge, ability to follow developments in science and technology, and constant self-renewal.
9) Conform to ethical principles, and standards of professional and ethical responsibility; be informed about the standards used in engineering applications.
10) Awareness of applications in business, such as project management, risk management and change management; awareness of entrepreneurship, and innovation; information about sustainable development.
11) Information about the universal and social health, environmental and safety effects of engineering applications and the ways in which contemporary problems are reflected in the engineering field; awareness of the legal consequences of engineering solutions.
12) Knowledge on advanced calculus, including differential equations applicable to automotive engineering; familiarity with statistics and linear algebra; knowledge on chemistry, calculus-based physics, dynamics, structural mechanics, structure and properties of materials, fluid dynamics, heat transfer, manufacturing processes, electronics and control, design of vehicle elements, vehicle dynamics, vehicle power train systems, automotive related regulations and vehicle validation/verification tests; ability to integrate and apply this knowledge to solve multidisciplinary automotive problems; ability to apply theoretical, experimental and simulation methods and, computer aided design techniques in the field of automotive engineering; ability to work in the field of vehicle design and manufacturing.

Learning Activity and Teaching Methods

Expression
Brainstorming/ Six tihnking hats
Individual study and homework
Lesson

Assessment & Grading Methods and Criteria

Written Exam (Open-ended questions, multiple choice, true-false, matching, fill in the blanks, sequencing)
Homework
Individual Project
Presentation

Assessment & Grading

Semester Requirements Number of Activities Level of Contribution
Homework Assignments 6 % 30
Presentation 1 % 15
Final 1 % 40
Paper Submission 1 % 15
total % 100
PERCENTAGE OF SEMESTER WORK % 60
PERCENTAGE OF FINAL WORK % 40
total % 100

Workload and ECTS Credit Grading

Activities Number of Activities Duration (Hours) Workload
Course Hours 16 3 48
Presentations / Seminar 1 20 20
Homework Assignments 6 6 36
Paper Submission 1 20 20
Final 1 48 48
Total Workload 172