EEE631 Advanced Electrical Distribution SystemsIstanbul Okan UniversityDegree Programs Automotive Mechatronics and Intelligent Vehicles (with thesis)General Information For StudentsDiploma SupplementErasmus Policy StatementNational Qualifications
Automotive Mechatronics and Intelligent Vehicles (with thesis)
Master TR-NQF-HE: Level 7 QF-EHEA: Second Cycle EQF-LLL: Level 7

General course introduction information

Course Code: EEE631
Course Name: Advanced Electrical Distribution Systems
Course Semester: Spring
Fall
Course Credits:
Theoretical Practical Credit ECTS
3 0 3 10
Language of instruction: EN
Course Requisites:
Does the Course Require Work Experience?: No
Type of course: Department Elective
Course Level:
Master TR-NQF-HE:7. Master`s Degree QF-EHEA:Second Cycle EQF-LLL:7. Master`s Degree
Mode of Delivery: Face to face
Course Coordinator : Assoc. Prof. ÖMER CİHAN KIVANÇ
Course Lecturer(s):
Course Assistants:

Course Objective and Content

Course Objectives: Explanation of the optimum design criteria of electrical distribution systems.
Course Content: Distribution system planning / Present distribution system planning techniques / Distribution system planning models / Factors affecting distribution system planning / Load characteristics / Load forecasting / Load density / Design of subtransmission lines and distribution substations / Radial type primary feeders / Loop type primary feeders / Substation service area with n primary feeders / Primary feeder loading / Radial feeders with uniformly distributed load / Radial feeders with nonuniformly distributed load / Optimum design criterions of underground primary feeders / Optimum feeder design of a given load level / The affects of load characteristics on the optimum feeder design.

Learning Outcomes

The students who have succeeded in this course;
Learning Outcomes
1 - Knowledge
Theoretical - Conceptual
2 - Skills
Cognitive - Practical
3 - Competences
Communication and Social Competence
Learning Competence
1) The Students will be able to have the professional knowledge and ethical responsibility
Field Specific Competence
1) The Students will be able to apply the knowledge and ability to continually innovating research, analysis and synthesis
2) The Students will be able to select and use the necessary tools for applications.
Competence to Work Independently and Take Responsibility

Lesson Plan

Week Subject Related Preparation
1) Distribution system planning. Course Notes
2) Present distribution system planning techniques. Course Notes
3) Distribution system planning models. Course Notes
4) Factors affecting distribution system planning. Course Notes
5) Load characteristics. Course Notes
6) Load forecasting, load density. Course Notes
7) Design of subtransmission lines and distribution substations. Course Notes
8) Loop type primary feeders. Course Notes
9) Primary feeder loading, radial feeders with uniformly distributed load. Course Notes
10) Radial feeders with nonuniformly distributed load. Course Notes
11) Optimum design criterions of underground primary feeders. Course Notes
12) Optimum feeder design of a given load level. Course Notes
13) Applications Course Notes
14) Applications Course Notes

Sources

Course Notes / Textbooks: T. A. Short, “Electric Power Distribution Equipment and Systems”, 2006.
Anthony j. Pansini, “Guide to Electrical Power Distribution Systems”, CRC Pres, 2005.
T. Gönen, “Electric Power Distribution System Engineering”, McGraw-Hill Book Company, 1986.
Westinghouse Electric Corporation, “Electric Utility Engineering Reference Book-Distribution Systems”, 1965
References: T. A. Short, “Electric Power Distribution Equipment and Systems”, 2006.
Anthony j. Pansini, “Guide to Electrical Power Distribution Systems”, CRC Pres, 2005.
T. Gönen, “Electric Power Distribution System Engineering”, McGraw-Hill Book Company, 1986.
Westinghouse Electric Corporation, “Electric Utility Engineering Reference Book-Distribution Systems”, 1965

Course-Program Learning Outcome Relationship

Learning Outcomes

1

2

3

Program Outcomes
1) Sufficient knowledge in mathematics, science and engineering related to their branches; and the ability to apply theoretical and practical knowledge in these areas to model and solve engineering problems.
2) The ability to identify, formulate, and solve complex engineering problems; selecting and applying appropriate analysis and modeling methods for this purpose.
3) The ability to design a complex system, process, device or product under realistic constraints and conditions to meet specific requirements; the ability to apply modern design methods for this purpose. (Realistic constraints and conditions include such issues as economy, environmental issues, sustainability, manufacturability, ethics, health, safety, social and political issues, according to the nature of design.)
4) Ability to develop, select and use modern techniques and tools necessary for engineering applications; ability to use information technologies effectively.
5) Ability to design experiments, conduct experiments, collect data, analyze and interpret results to examine engineering problems or discipline-specific research topics.
6) The ability to work effectively in disciplinary and multidisciplinary teams; individual work skill.
7) Effective communication skills in Turkish oral and written communication; at least one foreign language knowledge; ability to write effective reports and understand written reports, to prepare design and production reports, to make effective presentations, to give and receive clear and understandable instructions.
8) Awareness of the need for lifelong learning; access to knowledge, ability to follow developments in science and technology, and constant self-renewal.
9) Conform to ethical principles, and standards of professional and ethical responsibility; be informed about the standards used in engineering applications.
10) Awareness of applications in business, such as project management, risk management and change management; awareness of entrepreneurship, and innovation; information about sustainable development.
11) Information about the universal and social health, environmental and safety effects of engineering applications and the ways in which contemporary problems are reflected in the engineering field; awareness of the legal consequences of engineering solutions.
12) Knowledge on advanced calculus, including differential equations applicable to automotive engineering; familiarity with statistics and linear algebra; knowledge on chemistry, calculus-based physics, dynamics, structural mechanics, structure and properties of materials, fluid dynamics, heat transfer, manufacturing processes, electronics and control, design of vehicle elements, vehicle dynamics, vehicle power train systems, automotive related regulations and vehicle validation/verification tests; ability to integrate and apply this knowledge to solve multidisciplinary automotive problems; ability to apply theoretical, experimental and simulation methods and, computer aided design techniques in the field of automotive engineering; ability to work in the field of vehicle design and manufacturing.

Course - Learning Outcome Relationship

No Effect 1 Lowest 2 Low 3 Average 4 High 5 Highest
           
Program Outcomes Level of Contribution
1) Sufficient knowledge in mathematics, science and engineering related to their branches; and the ability to apply theoretical and practical knowledge in these areas to model and solve engineering problems.
2) The ability to identify, formulate, and solve complex engineering problems; selecting and applying appropriate analysis and modeling methods for this purpose.
3) The ability to design a complex system, process, device or product under realistic constraints and conditions to meet specific requirements; the ability to apply modern design methods for this purpose. (Realistic constraints and conditions include such issues as economy, environmental issues, sustainability, manufacturability, ethics, health, safety, social and political issues, according to the nature of design.)
4) Ability to develop, select and use modern techniques and tools necessary for engineering applications; ability to use information technologies effectively.
5) Ability to design experiments, conduct experiments, collect data, analyze and interpret results to examine engineering problems or discipline-specific research topics.
6) The ability to work effectively in disciplinary and multidisciplinary teams; individual work skill.
7) Effective communication skills in Turkish oral and written communication; at least one foreign language knowledge; ability to write effective reports and understand written reports, to prepare design and production reports, to make effective presentations, to give and receive clear and understandable instructions.
8) Awareness of the need for lifelong learning; access to knowledge, ability to follow developments in science and technology, and constant self-renewal.
9) Conform to ethical principles, and standards of professional and ethical responsibility; be informed about the standards used in engineering applications.
10) Awareness of applications in business, such as project management, risk management and change management; awareness of entrepreneurship, and innovation; information about sustainable development.
11) Information about the universal and social health, environmental and safety effects of engineering applications and the ways in which contemporary problems are reflected in the engineering field; awareness of the legal consequences of engineering solutions.
12) Knowledge on advanced calculus, including differential equations applicable to automotive engineering; familiarity with statistics and linear algebra; knowledge on chemistry, calculus-based physics, dynamics, structural mechanics, structure and properties of materials, fluid dynamics, heat transfer, manufacturing processes, electronics and control, design of vehicle elements, vehicle dynamics, vehicle power train systems, automotive related regulations and vehicle validation/verification tests; ability to integrate and apply this knowledge to solve multidisciplinary automotive problems; ability to apply theoretical, experimental and simulation methods and, computer aided design techniques in the field of automotive engineering; ability to work in the field of vehicle design and manufacturing.

Learning Activity and Teaching Methods

Lesson
Project preparation
Application (Modelling, Design, Model, Simulation, Experiment etc.)

Assessment & Grading Methods and Criteria

Written Exam (Open-ended questions, multiple choice, true-false, matching, fill in the blanks, sequencing)
Individual Project

Assessment & Grading

Semester Requirements Number of Activities Level of Contribution
Project 1 % 50
Final 1 % 50
total % 100
PERCENTAGE OF SEMESTER WORK % 50
PERCENTAGE OF FINAL WORK % 50
total % 100

Workload and ECTS Credit Grading

Activities Number of Activities Duration (Hours) Workload
Course Hours 14 3 42
Project 1 175 175
Final 1 80 80
Total Workload 297