Automotive Engineering (English)
Bachelor TR-NQF-HE: Level 6 QF-EHEA: First Cycle EQF-LLL: Level 6

General course introduction information

Course Code: ENG308
Course Name: Energy Policy
Course Semester: Spring
Course Credits:
Theoretical Practical Credit ECTS
3 0 3 5
Language of instruction: EN
Course Requisites:
Does the Course Require Work Experience?: No
Type of course: Faculty Elective
Course Level:
Bachelor TR-NQF-HE:6. Master`s Degree QF-EHEA:First Cycle EQF-LLL:6. Master`s Degree
Mode of Delivery: Face to face
Course Coordinator : Prof. Dr. RAMAZAN NEJAT TUNCAY
Course Lecturer(s): Prof. Dr. RAMAZAN NEJAT TUNCAY
Course Assistants:

Course Objective and Content

Course Objectives: Examining the world energy policies in detail
Course Content: Details and geographical distribution of main energy resources, energy production and technology use, reference and alternative scenarios in energy supply-demand, important actors and factors affecting energy prices, basic principles and actors of international energy policies, energy security and geopolitical concepts, Turkey's energy policies international relations in energy policies

Learning Outcomes

The students who have succeeded in this course;
Learning Outcomes
1 - Knowledge
Theoretical - Conceptual
1) To develop the ability to collect, evaluate and interpret data about energy systems.
2 - Skills
Cognitive - Practical
3 - Competences
Communication and Social Competence
Learning Competence
Field Specific Competence
1) To be informed about the engineering, economic, political, environmental, sustainability and social dimensions of energy systems and to be able to establish the relationship between this information.
Competence to Work Independently and Take Responsibility

Lesson Plan

Week Subject Related Preparation
1) Introduction & Syllabus None
2) Overview of Energy & Resources None
3) Energy Policies & International Relations None
4) Energy Supply- Demand & Security None
5) Energy Geopolitics None
6) Major Producers, Consumers & Traders None
7) Energy Supply & Demand Scenarios None
8) Major Energy Conflicts in the World None
9) US Energy Policies and Implementations None
10) Energy Policies of China and Developing World none
11) Energy policies of EU Countries None
12) Russia & Ukraine Crisis and EU Energy Security None
13) Energy Policies of Turkey None
14) Presentations None

Sources

Course Notes / Textbooks: Yok
References: None

Course-Program Learning Outcome Relationship

Learning Outcomes

1

2

Program Outcomes
1) Sufficient knowledge in mathematics, science and engineering related to their branches; and the ability to apply theoretical and practical knowledge in these areas to model and solve engineering problems.
2) The ability to identify, formulate, and solve complex engineering problems; selecting and applying appropriate analysis and modeling methods for this purpose.
3) The ability to design a complex system, process, device or product under realistic constraints and conditions to meet specific requirements; the ability to apply modern design methods for this purpose. (Realistic constraints and conditions include such issues as economy, environmental issues, sustainability, manufacturability, ethics, health, safety, social and political issues, according to the nature of design.)
4) Ability to develop, select and use modern techniques and tools necessary for engineering applications; ability to use information technologies effectively.
5) Ability to design experiments, conduct experiments, collect data, analyze and interpret results to examine engineering problems or discipline-specific research topics.
6) The ability to work effectively in disciplinary and multidisciplinary teams; individual work skill.
7) Effective communication skills in Turkish oral and written communication; at least one foreign language knowledge; ability to write effective reports and understand written reports, to prepare design and production reports, to make effective presentations, to give and receive clear and understandable instructions.
8) Awareness of the need for lifelong learning; access to knowledge, ability to follow developments in science and technology, and constant self-renewal.
9) Conform to ethical principles, and standards of professional and ethical responsibility; be informed about the standards used in engineering applications.
10) Awareness of applications in business, such as project management, risk management and change management; awareness of entrepreneurship, and innovation; information about sustainable development.
11) Information about the universal and social health, environmental and safety effects of engineering applications and the ways in which contemporary problems are reflected in the engineering field; awareness of the legal consequences of engineering solutions.
12) Knowledge on advanced calculus, including differential equations applicable to automotive engineering; familiarity with statistics and linear algebra; knowledge on chemistry, calculus-based physics, dynamics, structural mechanics, structure and properties of materials, fluid dynamics, heat transfer, manufacturing processes, electronics and control, design of vehicle elements, vehicle dynamics, vehicle power train systems, automotive related regulations and vehicle validation/verification tests; ability to integrate and apply this knowledge to solve multidisciplinary automotive problems; ability to apply theoretical, experimental and simulation methods and, computer aided design techniques in the field of automotive engineering; ability to work in the field of vehicle design and manufacturing.

Course - Learning Outcome Relationship

No Effect 1 Lowest 2 Low 3 Average 4 High 5 Highest
           
Program Outcomes Level of Contribution
1) Sufficient knowledge in mathematics, science and engineering related to their branches; and the ability to apply theoretical and practical knowledge in these areas to model and solve engineering problems.
2) The ability to identify, formulate, and solve complex engineering problems; selecting and applying appropriate analysis and modeling methods for this purpose.
3) The ability to design a complex system, process, device or product under realistic constraints and conditions to meet specific requirements; the ability to apply modern design methods for this purpose. (Realistic constraints and conditions include such issues as economy, environmental issues, sustainability, manufacturability, ethics, health, safety, social and political issues, according to the nature of design.)
4) Ability to develop, select and use modern techniques and tools necessary for engineering applications; ability to use information technologies effectively.
5) Ability to design experiments, conduct experiments, collect data, analyze and interpret results to examine engineering problems or discipline-specific research topics.
6) The ability to work effectively in disciplinary and multidisciplinary teams; individual work skill.
7) Effective communication skills in Turkish oral and written communication; at least one foreign language knowledge; ability to write effective reports and understand written reports, to prepare design and production reports, to make effective presentations, to give and receive clear and understandable instructions.
8) Awareness of the need for lifelong learning; access to knowledge, ability to follow developments in science and technology, and constant self-renewal.
9) Conform to ethical principles, and standards of professional and ethical responsibility; be informed about the standards used in engineering applications.
10) Awareness of applications in business, such as project management, risk management and change management; awareness of entrepreneurship, and innovation; information about sustainable development.
11) Information about the universal and social health, environmental and safety effects of engineering applications and the ways in which contemporary problems are reflected in the engineering field; awareness of the legal consequences of engineering solutions.
12) Knowledge on advanced calculus, including differential equations applicable to automotive engineering; familiarity with statistics and linear algebra; knowledge on chemistry, calculus-based physics, dynamics, structural mechanics, structure and properties of materials, fluid dynamics, heat transfer, manufacturing processes, electronics and control, design of vehicle elements, vehicle dynamics, vehicle power train systems, automotive related regulations and vehicle validation/verification tests; ability to integrate and apply this knowledge to solve multidisciplinary automotive problems; ability to apply theoretical, experimental and simulation methods and, computer aided design techniques in the field of automotive engineering; ability to work in the field of vehicle design and manufacturing.

Learning Activity and Teaching Methods

Lesson
Homework
Report Writing

Assessment & Grading Methods and Criteria

Written Exam (Open-ended questions, multiple choice, true-false, matching, fill in the blanks, sequencing)
Reporting
Bilgisayar Destekli Sunum

Assessment & Grading

Semester Requirements Number of Activities Level of Contribution
Homework Assignments 1 % 10
Project 1 % 20
Midterms 1 % 30
Final 1 % 40
total % 100
PERCENTAGE OF SEMESTER WORK % 60
PERCENTAGE OF FINAL WORK % 40
total % 100

Workload and ECTS Credit Grading

Activities Number of Activities Duration (Hours) Workload
Course Hours 14 3 42
Presentations / Seminar 1 18 18
Project 1 40 40
Homework Assignments 2 6 12
Midterms 1 16 16
Final 1 16 16
Total Workload 144