SPOR005 VolleyballIstanbul Okan UniversityDegree Programs Geomatic EngineeringGeneral Information For StudentsDiploma SupplementErasmus Policy StatementNational Qualifications
Geomatic Engineering
Bachelor TR-NQF-HE: Level 6 QF-EHEA: First Cycle EQF-LLL: Level 6

General course introduction information

Course Code: SPOR005
Course Name: Volleyball
Course Semester: Spring
Course Credits:
Theoretical Practical Credit ECTS
3 0 3 4
Language of instruction: TR
Course Requisites:
Does the Course Require Work Experience?: No
Type of course: University Elective
Course Level:
Bachelor TR-NQF-HE:6. Master`s Degree QF-EHEA:First Cycle EQF-LLL:6. Master`s Degree
Mode of Delivery: Face to face
Course Coordinator : Dr.Öğr.Üyesi GÖKHAN ÇETİNKAYA
Course Lecturer(s): Dr.Öğr.Üyesi GÖKHAN ÇETİNKAYA
Course Assistants:

Course Objective and Content

Course Objectives: The techniques and rules of volleyball, which is one of the most popular team sports, are not well known. In the activity lesson, it will be tried to transfer volleyball to the students in a regular way in terms of technique and tactics.
Course Content: The aim of the activity lesson, in which the basic skills of volleyball will be taught to the students, is to have fun and make volleyball popular. Difficult techniques such as block, headline, pass, dunk, serve will be transferred to students by cascading method.

Learning Outcomes

The students who have succeeded in this course;
Learning Outcomes
1 - Knowledge
Theoretical - Conceptual
1) Knows and explains the history of volleyball, general information about the game and basic positions.
2) Knows and explains the teaching, reinforcement and adaptation of volleyball techniques to the game.
2 - Skills
Cognitive - Practical
1) Skill development is achieved.
3 - Competences
Communication and Social Competence
Learning Competence
Field Specific Competence
Competence to Work Independently and Take Responsibility

Lesson Plan

Week Subject Related Preparation
1) Historical development of volleyball
2) Basic rules of volleyball
3) Technical-tactical knowledge in volleyball
4) Pass technique application
5) Reception technique application
6) Smash technique application
7) Service technique application
8) Exam
9) Block technique application
10) Plonjon technique application
11) Offense in volleyball
12) Defense in volleyball
13) Match
14) Video display
15) General evaluation
16) Exam

Sources

Course Notes / Textbooks: Okuma materyalleri, ödev kağıtları ile birlikte haftalık olarak verilecektir.

Reading material will be given on weekly Basis together with the assignment sheets.
References: 1. FIVB. (2020). 2020-2024 Resmi voleybol oyun kuralları.
2. Orkunoğlu, O. (1997). Voleybol öğretimi. Karatepe Yayınları.
3. Urartu, Ü. (1984). Voleybol, teknik-taktik-kondisyon. İnkilap Yayınları.

Course-Program Learning Outcome Relationship

Learning Outcomes

1

2

3

Program Outcomes
1) Awareness of professional and ethical responsibility.
2) Adequate knowledge in mathematics, science and engineering subjects pertaining to the relevant discipline; ability to use theoretical and applied information in these areas to model and solve engineering problems.
3) Ability to communicate effectively i Turkish, both orally and in writing; knowledge of a minimum of one foreign language.
4) Information about business life practices such as project management, risk management, and change management; awareness of entrepreneurship, innovation, and sustainable development.
5) Ability to design a complex system, process, device or product under realistic constraints and conditions, in such a way so as to meet the desired result; ability to apply modern design methods for this purpose. (Realistic constraints and conditions may include factors such as economic and environmental issues, sustainability, manufacturability, ethics, health, safety isuues, and social and political issues according to the nature of the design.)
6) Ability to work efficiently in intra-disciplinary and multi-disciplinary teams; ability to work individually.
7) Ability to devise, select, and use modern techniques and tools needed for engineering practice; ability to employ information technologies effectively.
8) Ability to identify, formulate, and solve complex engineering problems; ability to select and apply proper analysis and modelling methods for this purpose.
9) Knowledge about contemporary issues and the global and societal effects of engineering practices on health, environment, and safety; awareness of the legal consequences of engineering solutions.
10) Recognition of the need for lifelong learning; ability to access information, to follow developments in science and technology, and to continue to educate him/herself.
11) Ability to design and conduct experiments, gather data, analyse and interpret results for investigating engineering problems.

Course - Learning Outcome Relationship

No Effect 1 Lowest 2 Low 3 Average 4 High 5 Highest
           
Program Outcomes Level of Contribution
1) Awareness of professional and ethical responsibility.
2) Adequate knowledge in mathematics, science and engineering subjects pertaining to the relevant discipline; ability to use theoretical and applied information in these areas to model and solve engineering problems.
3) Ability to communicate effectively i Turkish, both orally and in writing; knowledge of a minimum of one foreign language.
4) Information about business life practices such as project management, risk management, and change management; awareness of entrepreneurship, innovation, and sustainable development.
5) Ability to design a complex system, process, device or product under realistic constraints and conditions, in such a way so as to meet the desired result; ability to apply modern design methods for this purpose. (Realistic constraints and conditions may include factors such as economic and environmental issues, sustainability, manufacturability, ethics, health, safety isuues, and social and political issues according to the nature of the design.)
6) Ability to work efficiently in intra-disciplinary and multi-disciplinary teams; ability to work individually.
7) Ability to devise, select, and use modern techniques and tools needed for engineering practice; ability to employ information technologies effectively.
8) Ability to identify, formulate, and solve complex engineering problems; ability to select and apply proper analysis and modelling methods for this purpose.
9) Knowledge about contemporary issues and the global and societal effects of engineering practices on health, environment, and safety; awareness of the legal consequences of engineering solutions.
10) Recognition of the need for lifelong learning; ability to access information, to follow developments in science and technology, and to continue to educate him/herself.
11) Ability to design and conduct experiments, gather data, analyse and interpret results for investigating engineering problems.

Learning Activity and Teaching Methods

Individual study and homework
Lesson
Application (Modelling, Design, Model, Simulation, Experiment etc.)

Assessment & Grading Methods and Criteria

Written Exam (Open-ended questions, multiple choice, true-false, matching, fill in the blanks, sequencing)
Application

Assessment & Grading

Semester Requirements Number of Activities Level of Contribution
Attendance 1 % 20
Midterms 1 % 30
Final 1 % 50
total % 100
PERCENTAGE OF SEMESTER WORK % 50
PERCENTAGE OF FINAL WORK % 50
total % 100

Workload and ECTS Credit Grading

Activities Number of Activities Workload
Course Hours 13 39
Midterms 1 1
Final 1 1
Total Workload 41