Civil Engineering (English) | |||||
Bachelor | TR-NQF-HE: Level 6 | QF-EHEA: First Cycle | EQF-LLL: Level 6 |
Course Code: | SPOR206 | ||||||||
Course Name: | Spor Psikolojisi | ||||||||
Course Semester: | Spring | ||||||||
Course Credits: |
|
||||||||
Language of instruction: | TR | ||||||||
Course Requisites: | |||||||||
Does the Course Require Work Experience?: | No | ||||||||
Type of course: | University Elective | ||||||||
Course Level: |
|
||||||||
Mode of Delivery: | Face to face | ||||||||
Course Coordinator : | Öğr.Gör. SERKAN ALPYAGİL | ||||||||
Course Lecturer(s): |
Dr.Öğr.Üyesi GÖKHAN ÇETİNKAYA |
||||||||
Course Assistants: |
Course Objectives: | In the Sport Psychology course, the applications of sports psychology, which is a branch of science that deals with the psychological foundations, processes and results of psychological arrangements related to participation in sports, are presented. |
Course Content: | • Basic concepts and history of Sport Psychology are learned. • Basic study topics of Sports Psychology are learned |
The students who have succeeded in this course;
|
Week | Subject | Related Preparation |
1) | Explanation of the main objectives of the course and listening to the student opinions | Spor ve Egzersiz Psikolojisinin Temelleri |
2) | • Explaining the definition and history of sports psychology. | Spor ve Egzersiz Psikolojisinin Temelleri |
3) | Study areas and topics of Sport Psychology | Spor ve Egzersiz Psikolojisinin Temelleri |
4) | Personality factors in sports | Spor ve Egzersiz Psikolojisinin Temelleri |
5) | Usage areas and formation factors of Motivation in Sports | Spor ve Egzersiz Psikolojisinin Temelleri |
6) | Usage areas and formation factors of Motivation in Sports | Spor ve Egzersiz Psikolojisinin Temelleri |
7) | Elements that cause anxiety and stress in sports and their management. | Spor ve Egzersiz Psikolojisinin Temelleri |
8) | Basic components of readiness and arousal | Spor ve Egzersiz Psikolojisinin Temelleri Robert Weinberg & Daniel Gould, 2015, Nobel Yayıncılık |
9) | MIDTERM | MIDTERM |
10) | Improving focus skill | Robert Weinberg & Daniel Gould, 2015, Nobel Yayıncılık |
11) | The effect of internal conversations on performance | Robert Weinberg & Daniel Gould, 2015, Nobel Yayıncılık |
12) | Group and Team dynamics | Robert Weinberg & Daniel Gould, 2015, Nobel Yayıncılık |
13) | Self Confidence Development | Robert Weinberg & Daniel Gould, 2015, Nobel Yayıncılık |
14) | FINAL | FINAL |
Course Notes / Textbooks: | Spor ve Egzersiz Psikolojisinin Temelleri |
References: | Spor ve Egzersiz Psikolojisinin Temelleri |
Learning Outcomes | 1 |
2 |
3 |
|||||||
---|---|---|---|---|---|---|---|---|---|---|
Program Outcomes | ||||||||||
1) Adequate knowledge in mathematics, science and engineering subjects pertaining to the relevant discipline; ability to use theoretical and applied information in these areas to model and solve engineering problems. | ||||||||||
2) Ability to identify, formulate, and solve complex engineering problems; ability to select and apply proper analysis and modelling methods for this purpose. | ||||||||||
3) Ability to design a complex system, process, device or product under realistic constraints and conditions, in such a way so as to meet the desired result; ability to apply modern design methods for this purpose. (Realistic constraints and conditions may include factors such as economic and environmental issues, sustainability, manufacturability, ethics, health, safety issues, and social and political issues according to the nature of the design.) | ||||||||||
4) Ability to select and use modern techniques and tools needed for analyzing and solving complex problems encountered in engineering practice; ability to employ information technologies effectively. | ||||||||||
5) Ability to design and conduct experiments, gather data, analyze and interpret results for investigating complex engineering problems or discipline specific research questions. | ||||||||||
6) Ability to work efficiently in intra-disciplinary and multi-disciplinary teams; ability to work individually. | ||||||||||
7) Ability to communicate effectively, both orally and in writing; knowledge of a minimum of one foreign language; ability to write effective reports and comprehend written reports, prepare design and production reports, make effective presentations, and give and receive clear and intelligible instructions. | ||||||||||
8) Recognition of the need for lifelong learning; ability to access information, to follow developments in science and technology, and to continue to educate him/herself. | ||||||||||
9) Knowledge on behavior according ethical principles, professional and ethical responsibility and standards used in engineering practices. | ||||||||||
10) Knowledge about business life practices such as project management, risk management, and change management; awareness in entrepreneurship, innovation; knowledge about sustainable development. | ||||||||||
11) Knowledge about contemporary issues and the global and societal effects of engineering practices on health, environment, and safety; awareness of the legal consequences of engineering solutions. |
No Effect | 1 Lowest | 2 Low | 3 Average | 4 High | 5 Highest |
Program Outcomes | Level of Contribution | |
1) | Adequate knowledge in mathematics, science and engineering subjects pertaining to the relevant discipline; ability to use theoretical and applied information in these areas to model and solve engineering problems. | |
2) | Ability to identify, formulate, and solve complex engineering problems; ability to select and apply proper analysis and modelling methods for this purpose. | |
3) | Ability to design a complex system, process, device or product under realistic constraints and conditions, in such a way so as to meet the desired result; ability to apply modern design methods for this purpose. (Realistic constraints and conditions may include factors such as economic and environmental issues, sustainability, manufacturability, ethics, health, safety issues, and social and political issues according to the nature of the design.) | |
4) | Ability to select and use modern techniques and tools needed for analyzing and solving complex problems encountered in engineering practice; ability to employ information technologies effectively. | |
5) | Ability to design and conduct experiments, gather data, analyze and interpret results for investigating complex engineering problems or discipline specific research questions. | |
6) | Ability to work efficiently in intra-disciplinary and multi-disciplinary teams; ability to work individually. | |
7) | Ability to communicate effectively, both orally and in writing; knowledge of a minimum of one foreign language; ability to write effective reports and comprehend written reports, prepare design and production reports, make effective presentations, and give and receive clear and intelligible instructions. | |
8) | Recognition of the need for lifelong learning; ability to access information, to follow developments in science and technology, and to continue to educate him/herself. | |
9) | Knowledge on behavior according ethical principles, professional and ethical responsibility and standards used in engineering practices. | |
10) | Knowledge about business life practices such as project management, risk management, and change management; awareness in entrepreneurship, innovation; knowledge about sustainable development. | |
11) | Knowledge about contemporary issues and the global and societal effects of engineering practices on health, environment, and safety; awareness of the legal consequences of engineering solutions. |
Peer Review | |
Expression | |
Q&A / Discussion |
Oral Examination | |
Individual Project | |
Group project | |
Tez Sunma | |
Uzman / Jüri Değerlendirmesi |
Semester Requirements | Number of Activities | Level of Contribution |
Attendance | 1 | % 10 |
Presentation | 1 | % 10 |
Midterms | 1 | % 30 |
Final | 1 | % 50 |
total | % 100 | |
PERCENTAGE OF SEMESTER WORK | % 50 | |
PERCENTAGE OF FINAL WORK | % 50 | |
total | % 100 |
Activities | Number of Activities | Workload |
Course Hours | 13 | 39 |
Midterms | 1 | 1 |
Final | 1 | 1 |
Total Workload | 41 |