Computer Engineering (English) | |||||
Bachelor | TR-NQF-HE: Level 6 | QF-EHEA: First Cycle | EQF-LLL: Level 6 |
Course Code: | MATH215 | ||||||||
Course Name: | Mathematics III | ||||||||
Course Semester: | Spring | ||||||||
Course Credits: |
|
||||||||
Language of instruction: | EN | ||||||||
Course Requisites: |
MATH113 - Mathematics I |
||||||||
Does the Course Require Work Experience?: | No | ||||||||
Type of course: | |||||||||
Course Level: |
|
||||||||
Mode of Delivery: | Face to face | ||||||||
Course Coordinator : | Dr.Öğr.Üyesi MESERET TUBA GÜLPINAR | ||||||||
Course Lecturer(s): |
Prof. Dr. SEZGİN SEZER Prof. Dr. VASFİ ELDEM Prof. Dr. HASAN ÖZEKES |
||||||||
Course Assistants: |
Course Objectives: | The aim of this course to understand basic concepts of linear algebra ( systems of linear equations and their solutions, the operations of the matrix and vector algebra, evaluations of the determinants and inverse matrix, properties of determinants, Cramer’s Rule, vector spaces, subspaces, linear independence, basis, row space, column space, null space, rank, linear transformations, eigenvalues and eigenvectors, diagonalization, inner product spaces, orthogonality, Gram-Schmidt process, least squares, orthogonal diagonalization and singular value decomposition) and solve problems about it. |
Course Content: | This course will investigate systems of linear equations and their solutions, the operations of the matrix and vector algebra, evaluations of the determinants and inverse matrix, properties of determinants, Cramer’s Rule, vector spaces, subspaces, linear independence, basis, row space, column space, null space, rank, linear transformations, eigenvalues and eigenvectors, diagonalization, inner product spaces, orthogonality, Gram-Schmidt process, least squares, orthogonal diagonalization and singular value decomposition. |
The students who have succeeded in this course;
|
Week | Subject | Related Preparation |
1) | Syllabus. Systems of linear equations. Elementary row operations. Gauss-Jordan Elimination | Lecture Notes |
2) | Matrix Algebra | Lecture Notes |
3) | Matrix Algebra | Lecture Notes |
4) | Determinants | Lecture Notes |
5) | Determinants | Lecture Notes |
Course Notes / Textbooks: | Linear Algebra and Its Applications, 5th Edition David C. Lay, Stephan R. Lay, Judi J. McDonald Pearson Education Limited |
References: | Lecture notes - Ders notları |
Learning Outcomes | 1 |
2 |
3 |
4 |
5 |
|||||
---|---|---|---|---|---|---|---|---|---|---|
Program Outcomes | ||||||||||
1) Sufficient knowledge in mathematics, science and engineering related to their branches; the ability to apply theoretical and practical knowledge in these areas to model and solve engineering problems. | ||||||||||
2) The ability to identify, formulate, and solve complex engineering problems; selecting and applying appropriate analysis and modeling methods for this purpose. | ||||||||||
3) The ability to design a complex system, process, device or product under realistic constraints and conditions to meet specific requirements; the ability to apply modern design methods for this purpose. (Realistic constraints and conditions include such issues as economy, environmental issues, sustainability, manufacturability, ethics, health, safety, social and political issues, according to the nature of design.) | ||||||||||
4) Ability to develop, select and use modern techniques and tools necessary for engineering applications; ability to use information technologies effectively. | ||||||||||
5) Ability to design experiments, conduct experiments, collect data, analyze and interpret results for examination of engineering problems. | ||||||||||
6) The ability to work effectively in disciplinary and multidisciplinary teams; individual work skill. | ||||||||||
7) Effective communication skills in Turkish oral and written communication; at least one foreign language knowledge. | ||||||||||
8) Awareness of the need for lifelong learning; access to knowledge, ability to follow developments in science and technology, and constant self-renewal. | ||||||||||
9) Professional and ethical responsibility. | ||||||||||
10) Information on project management and practices in business life such as risk management and change management; awareness about entrepreneurship, innovation and sustainable development. | ||||||||||
11) Information on the effects of engineering applications on health, environment and safety in the universal and social dimensions and the problems of the times; awareness of the legal consequences of engineering solutions. |
No Effect | 1 Lowest | 2 Low | 3 Average | 4 High | 5 Highest |
Program Outcomes | Level of Contribution | |
1) | Sufficient knowledge in mathematics, science and engineering related to their branches; the ability to apply theoretical and practical knowledge in these areas to model and solve engineering problems. | |
2) | The ability to identify, formulate, and solve complex engineering problems; selecting and applying appropriate analysis and modeling methods for this purpose. | 1 |
3) | The ability to design a complex system, process, device or product under realistic constraints and conditions to meet specific requirements; the ability to apply modern design methods for this purpose. (Realistic constraints and conditions include such issues as economy, environmental issues, sustainability, manufacturability, ethics, health, safety, social and political issues, according to the nature of design.) | 4 |
4) | Ability to develop, select and use modern techniques and tools necessary for engineering applications; ability to use information technologies effectively. | 2 |
5) | Ability to design experiments, conduct experiments, collect data, analyze and interpret results for examination of engineering problems. | |
6) | The ability to work effectively in disciplinary and multidisciplinary teams; individual work skill. | 5 |
7) | Effective communication skills in Turkish oral and written communication; at least one foreign language knowledge. | |
8) | Awareness of the need for lifelong learning; access to knowledge, ability to follow developments in science and technology, and constant self-renewal. | |
9) | Professional and ethical responsibility. | |
10) | Information on project management and practices in business life such as risk management and change management; awareness about entrepreneurship, innovation and sustainable development. | 3 |
11) | Information on the effects of engineering applications on health, environment and safety in the universal and social dimensions and the problems of the times; awareness of the legal consequences of engineering solutions. |
Lesson | |
Reading | |
Homework | |
Problem Solving | |
Q&A / Discussion |
Written Exam (Open-ended questions, multiple choice, true-false, matching, fill in the blanks, sequencing) | |
Homework |
Semester Requirements | Number of Activities | Level of Contribution |
Homework Assignments | 5 | % 20 |
Midterms | 2 | % 40 |
Final | 1 | % 40 |
total | % 100 | |
PERCENTAGE OF SEMESTER WORK | % 60 | |
PERCENTAGE OF FINAL WORK | % 40 | |
total | % 100 |
Activities | Number of Activities | Duration (Hours) | Workload |
Course Hours | 15 | 4 | 60 |
Study Hours Out of Class | 15 | 3 | 45 |
Homework Assignments | 5 | 5 | 25 |
Midterms | 2 | 10 | 20 |
Final | 1 | 15 | 15 |
Total Workload | 165 |