MATH265 Probability & Statistics IIstanbul Okan UniversityDegree Programs Genetics and Bioengineering (English)General Information For StudentsDiploma SupplementErasmus Policy StatementNational Qualifications
Genetics and Bioengineering (English)
Bachelor TR-NQF-HE: Level 6 QF-EHEA: First Cycle EQF-LLL: Level 6

General course introduction information

Course Code: MATH265
Course Name: Probability & Statistics I
Course Semester: Fall
Course Credits:
Theoretical Practical Credit ECTS
3 0 3 5
Language of instruction: EN
Course Requisites: MATH113 - Mathematics I
Does the Course Require Work Experience?: No
Type of course: Compulsory
Course Level:
Bachelor TR-NQF-HE:6. Master`s Degree QF-EHEA:First Cycle EQF-LLL:6. Master`s Degree
Mode of Delivery: Face to face
Course Coordinator : Dr.Öğr.Üyesi MESERET TUBA GÜLPINAR
Course Lecturer(s): Dr.Öğr.Üyesi ASUMAN ÖZER
Course Assistants:

Course Objective and Content

Course Objectives: The aim of the course is to gain basic knowledge and abilities to the students about Combinatorial methods; product rule, permutation, combination. Probability; probability axioms, conditional probability, Bayes formula. Random variable; distribution function, probability function, Chebyshev inequality. Discrete and continuous distributions; uniform, Bernoulli, Poisson, geometric, hypergeometric, normal, exponential, gamma and beta distributions. Generating functions.
Course Content: Combinatorial methods; product rule, permutation, combination. Probability; probability axioms, conditional probability, Bayes formula. Random variable; distribution function, probability function, Chebyshev inequality. Discrete and continuous distributions; uniform, Bernoulli, Poisson, geometric, hypergeometric, normal, exponential, gamma and beta distributions. Generating functions.

Learning Outcomes

The students who have succeeded in this course;
Learning Outcomes
1 - Knowledge
Theoretical - Conceptual
1) Solve engineering problems using probability theory.
2) Solve engineering problems using statistics.
3) Formulate probabilistic and statistical models of real life problems.
2 - Skills
Cognitive - Practical
3 - Competences
Communication and Social Competence
Learning Competence
Field Specific Competence
Competence to Work Independently and Take Responsibility

Lesson Plan

Week Subject Related Preparation
1) Set Theory, Random Variable, Sample Space, Important Theorems on Probability, Conditional Probability, Bayes’ Theorem, Tree Diagrams, Permutations, Combinations, Binomial Coefficients, Stirlings Approximation,Discrete and Continuous Probability Distributions, Mathematical Expectation,Variance and Standard Deviation, Joint Distributions, Normal , Binomial, Poisson, Multinomial, Hypergeometric etc. Distributions Bulunmamaktadır.

Sources

Course Notes / Textbooks: Probability and Statistics for Engineers and Scientists, Ronald E. Walpole, Raymond H. Myers, Sharon L. Myers, Keying Ye, Pearson Ed.
ISBN 13: 978-0-321-62911-1
References: Lecture Notes- Ders notları

Course-Program Learning Outcome Relationship

Learning Outcomes

1

2

3

Program Outcomes
1) Sufficient knowledge in mathematics, science and engineering related to their branches; and the ability to apply theoretical and practical knowledge in these areas to model and solve engineering problems.
2) The ability to identify, formulate, and solve complex engineering problems; selecting and applying appropriate analysis and modeling methods for this purpose.
3) The ability to design a complex system, process, device or product under realistic constraints and conditions to meet specific requirements; the ability to apply modern design methods for this purpose. (Realistic constraints and conditions include such issues as economy, environmental issues, sustainability, manufacturability, ethics, health, safety, social and political issues, according to the nature of design.)
4) Ability to develop, select and use modern techniques and tools necessary for engineering applications; ability to use information technologies effectively.
5) Ability to design experiments, conduct experiments, collect data, analyze and interpret results to examine engineering problems or discipline-specific research topics.
6) The ability to work effectively in disciplinary and multidisciplinary teams; individual work skill.
7) Effective communication skills in Turkish oral and written communication; at least one foreign language knowledge; ability to write effective reports and understand written reports, to prepare design and production reports, to make effective presentations, to give and receive clear and understandable instructions.
8) Awareness of the need for lifelong learning; access to knowledge, ability to follow developments in science and technology, and constant self-renewal.
9) Conform to ethical principles, and standards of professional and ethical responsibility; be informed about the standards used in engineering applications.
10) Awareness of applications in business, such as project management, risk management and change management; awareness of entrepreneurship, and innovation; information about sustainable development.
11) Information about the universal and social health, environmental and safety effects of engineering applications and the ways in which contemporary problems are reflected in the engineering field; awareness of the legal consequences of engineering solutions.

Course - Learning Outcome Relationship

No Effect 1 Lowest 2 Low 3 Average 4 High 5 Highest
           
Program Outcomes Level of Contribution
1) Sufficient knowledge in mathematics, science and engineering related to their branches; and the ability to apply theoretical and practical knowledge in these areas to model and solve engineering problems. 3
2) The ability to identify, formulate, and solve complex engineering problems; selecting and applying appropriate analysis and modeling methods for this purpose.
3) The ability to design a complex system, process, device or product under realistic constraints and conditions to meet specific requirements; the ability to apply modern design methods for this purpose. (Realistic constraints and conditions include such issues as economy, environmental issues, sustainability, manufacturability, ethics, health, safety, social and political issues, according to the nature of design.)
4) Ability to develop, select and use modern techniques and tools necessary for engineering applications; ability to use information technologies effectively. 1
5) Ability to design experiments, conduct experiments, collect data, analyze and interpret results to examine engineering problems or discipline-specific research topics.
6) The ability to work effectively in disciplinary and multidisciplinary teams; individual work skill. 1
7) Effective communication skills in Turkish oral and written communication; at least one foreign language knowledge; ability to write effective reports and understand written reports, to prepare design and production reports, to make effective presentations, to give and receive clear and understandable instructions.
8) Awareness of the need for lifelong learning; access to knowledge, ability to follow developments in science and technology, and constant self-renewal.
9) Conform to ethical principles, and standards of professional and ethical responsibility; be informed about the standards used in engineering applications.
10) Awareness of applications in business, such as project management, risk management and change management; awareness of entrepreneurship, and innovation; information about sustainable development.
11) Information about the universal and social health, environmental and safety effects of engineering applications and the ways in which contemporary problems are reflected in the engineering field; awareness of the legal consequences of engineering solutions.

Learning Activity and Teaching Methods

Lesson
Reading
Problem Solving
Q&A / Discussion

Assessment & Grading Methods and Criteria

Written Exam (Open-ended questions, multiple choice, true-false, matching, fill in the blanks, sequencing)

Assessment & Grading

Semester Requirements Number of Activities Level of Contribution
Midterms 2 % 50
Final 1 % 50
total % 100
PERCENTAGE OF SEMESTER WORK % 50
PERCENTAGE OF FINAL WORK % 50
total % 100

Workload and ECTS Credit Grading

Activities Number of Activities Duration (Hours) Workload
Course Hours 15 3 45
Study Hours Out of Class 15 3 45
Midterms 2 15 30
Final 1 20 20
Total Workload 140