PSI304 Field Studies IIIstanbul Okan UniversityDegree Programs Automotive Engineering (English)General Information For StudentsDiploma SupplementErasmus Policy StatementNational Qualifications
Automotive Engineering (English)
Bachelor TR-NQF-HE: Level 6 QF-EHEA: First Cycle EQF-LLL: Level 6

General course introduction information

Course Code: PSI304
Course Name: Field Studies II
Course Semester: Spring
Course Credits:
Theoretical Practical Credit ECTS
2 2 3 6
Language of instruction:
Course Requisites:
Does the Course Require Work Experience?: No
Type of course: University Elective
Course Level:
Bachelor TR-NQF-HE:6. Master`s Degree QF-EHEA:First Cycle EQF-LLL:6. Master`s Degree
Mode of Delivery: Face to face
Course Coordinator : Dr.Öğr.Üyesi ZEYNEP HALE AKSUNA
Course Lecturer(s): Öğr.Gör. ELİF NAZLI AKBAŞ
Course Assistants:

Course Objective and Content

Course Objectives: This course provides students an opportunity to observe children in nurseries and other relevant children-centered institutions. The aim is to help students to learn about child development through interactions with young children at different ages.
Course Content: This course provides students an opportunity to observe children in nurseries and other relevant children-centered institutions. The aim is to help students to learn about child development through interactions with young children at different ages.

Learning Outcomes

The students who have succeeded in this course;
Learning Outcomes
1 - Knowledge
Theoretical - Conceptual
1) A
2) A
3) A
2 - Skills
Cognitive - Practical
3 - Competences
Communication and Social Competence
Learning Competence
Field Specific Competence
Competence to Work Independently and Take Responsibility

Lesson Plan

Week Subject Related Preparation
1) Methodology for Data Collection/Research Reporting for Projects Lecturer's notes and related articles
1) Practical and Ethical Issues in Research Lecturer's notes and related articles
2) Forming a Research Question and Research Patterns Lecturer's notes and related articles
3) How to Scan Literature /APA format Lecturer's notes and related articles
4) Presentation and Evaluation of Research Proposals Lecturer's notes and related articles
5) Sampling and Data Collection Methods Lecturer's notes and related articles
6) Evaluation of Scales to be Used for Projects Lecturer's notes and related articles
7) Introduction to Data Collection / Research Reporting for Projects Lecturer's notes and related articles
8) Methodology for Data Collection/Research Reporting for Projects Lecturer's notes and related articles
9) Data Collection for Projects/Results and Discussion in Reporting the Research/Presentation of the Report Lecturer's notes and related articles
10) Data Analysis / Presentation of the Methodology Section of the Report Lecturer's notes and related articles
11) Data Analytics Lecturer's notes and related articles
12) Presenting Data Analytics Lecturer's notes and related articles
13) Presentation of Projects Lecturer's notes and related articles
14) Presentation of Projects Lecturer's notes and related articles
15) All topics covered in the course for 14 weeks Lecturer's notes and related articles

Sources

Course Notes / Textbooks: Dersin öğretim görevlisinin notları ve ilgili makaleler
References: Dersin öğretim görevlisinin notları ve ilgili makaleler

Course-Program Learning Outcome Relationship

Learning Outcomes

1

2

3

Program Outcomes
1) Sufficient knowledge in mathematics, science and engineering related to their branches; and the ability to apply theoretical and practical knowledge in these areas to model and solve engineering problems.
2) The ability to identify, formulate, and solve complex engineering problems; selecting and applying appropriate analysis and modeling methods for this purpose.
3) The ability to design a complex system, process, device or product under realistic constraints and conditions to meet specific requirements; the ability to apply modern design methods for this purpose. (Realistic constraints and conditions include such issues as economy, environmental issues, sustainability, manufacturability, ethics, health, safety, social and political issues, according to the nature of design.)
4) Ability to develop, select and use modern techniques and tools necessary for engineering applications; ability to use information technologies effectively.
5) Ability to design experiments, conduct experiments, collect data, analyze and interpret results to examine engineering problems or discipline-specific research topics.
6) The ability to work effectively in disciplinary and multidisciplinary teams; individual work skill.
7) Effective communication skills in Turkish oral and written communication; at least one foreign language knowledge; ability to write effective reports and understand written reports, to prepare design and production reports, to make effective presentations, to give and receive clear and understandable instructions.
8) Awareness of the need for lifelong learning; access to knowledge, ability to follow developments in science and technology, and constant self-renewal.
9) Conform to ethical principles, and standards of professional and ethical responsibility; be informed about the standards used in engineering applications.
10) Awareness of applications in business, such as project management, risk management and change management; awareness of entrepreneurship, and innovation; information about sustainable development.
11) Information about the universal and social health, environmental and safety effects of engineering applications and the ways in which contemporary problems are reflected in the engineering field; awareness of the legal consequences of engineering solutions.
12) Knowledge on advanced calculus, including differential equations applicable to automotive engineering; familiarity with statistics and linear algebra; knowledge on chemistry, calculus-based physics, dynamics, structural mechanics, structure and properties of materials, fluid dynamics, heat transfer, manufacturing processes, electronics and control, design of vehicle elements, vehicle dynamics, vehicle power train systems, automotive related regulations and vehicle validation/verification tests; ability to integrate and apply this knowledge to solve multidisciplinary automotive problems; ability to apply theoretical, experimental and simulation methods and, computer aided design techniques in the field of automotive engineering; ability to work in the field of vehicle design and manufacturing.

Course - Learning Outcome Relationship

No Effect 1 Lowest 2 Low 3 Average 4 High 5 Highest
           
Program Outcomes Level of Contribution
1) Sufficient knowledge in mathematics, science and engineering related to their branches; and the ability to apply theoretical and practical knowledge in these areas to model and solve engineering problems.
2) The ability to identify, formulate, and solve complex engineering problems; selecting and applying appropriate analysis and modeling methods for this purpose.
3) The ability to design a complex system, process, device or product under realistic constraints and conditions to meet specific requirements; the ability to apply modern design methods for this purpose. (Realistic constraints and conditions include such issues as economy, environmental issues, sustainability, manufacturability, ethics, health, safety, social and political issues, according to the nature of design.)
4) Ability to develop, select and use modern techniques and tools necessary for engineering applications; ability to use information technologies effectively.
5) Ability to design experiments, conduct experiments, collect data, analyze and interpret results to examine engineering problems or discipline-specific research topics.
6) The ability to work effectively in disciplinary and multidisciplinary teams; individual work skill.
7) Effective communication skills in Turkish oral and written communication; at least one foreign language knowledge; ability to write effective reports and understand written reports, to prepare design and production reports, to make effective presentations, to give and receive clear and understandable instructions.
8) Awareness of the need for lifelong learning; access to knowledge, ability to follow developments in science and technology, and constant self-renewal.
9) Conform to ethical principles, and standards of professional and ethical responsibility; be informed about the standards used in engineering applications.
10) Awareness of applications in business, such as project management, risk management and change management; awareness of entrepreneurship, and innovation; information about sustainable development.
11) Information about the universal and social health, environmental and safety effects of engineering applications and the ways in which contemporary problems are reflected in the engineering field; awareness of the legal consequences of engineering solutions.
12) Knowledge on advanced calculus, including differential equations applicable to automotive engineering; familiarity with statistics and linear algebra; knowledge on chemistry, calculus-based physics, dynamics, structural mechanics, structure and properties of materials, fluid dynamics, heat transfer, manufacturing processes, electronics and control, design of vehicle elements, vehicle dynamics, vehicle power train systems, automotive related regulations and vehicle validation/verification tests; ability to integrate and apply this knowledge to solve multidisciplinary automotive problems; ability to apply theoretical, experimental and simulation methods and, computer aided design techniques in the field of automotive engineering; ability to work in the field of vehicle design and manufacturing.

Learning Activity and Teaching Methods

Field Study
Group study and homework
Reading
Homework
Internship/Onsite Practice

Assessment & Grading Methods and Criteria

Application
Individual Project
Group project

Assessment & Grading

Semester Requirements Number of Activities Level of Contribution
Midterms 2 % 50
Final 1 % 50
total % 100
PERCENTAGE OF SEMESTER WORK % 50
PERCENTAGE OF FINAL WORK % 50
total % 100

Workload and ECTS Credit Grading

Activities Number of Activities Workload
Course Hours 13 39
Application 16 48
Special Course Internship (Work Placement) 16 48
Study Hours Out of Class 8 24
Midterms 2 6
Final 1 3
Total Workload 168