PSI454 Counselling Psychology IIIstanbul Okan UniversityDegree Programs Industrial Engineering (English)General Information For StudentsDiploma SupplementErasmus Policy StatementNational Qualifications
Industrial Engineering (English)
Bachelor TR-NQF-HE: Level 6 QF-EHEA: First Cycle EQF-LLL: Level 6

General course introduction information

Course Code: PSI454
Course Name: Counselling Psychology II
Course Semester: Fall
Course Credits:
Theoretical Practical Credit ECTS
3 0 3 7
Language of instruction:
Course Requisites:
Does the Course Require Work Experience?: No
Type of course: University / Foreign Language
Course Level:
Bachelor TR-NQF-HE:6. Master`s Degree QF-EHEA:First Cycle EQF-LLL:6. Master`s Degree
Mode of Delivery: Face to face
Course Coordinator : Dr.Öğr.Üyesi EVİN AYDIN YÖNTEM
Course Lecturer(s): Öğr.Gör. GÜNEY ERDEN
Course Assistants:

Course Objective and Content

Course Objectives: To gain knowledge and skills about basic theories, approaches and techniques in counseling psychology.
Course Content: To gain knowledge and skills about basic theories, approaches and techniques in counseling psychology.

Learning Outcomes

The students who have succeeded in this course;
Learning Outcomes
1 - Knowledge
Theoretical - Conceptual
1) A
2) A
3) A
2 - Skills
Cognitive - Practical
3 - Competences
Communication and Social Competence
Learning Competence
Field Specific Competence
Competence to Work Independently and Take Responsibility

Lesson Plan

Week Subject Related Preparation
1) Danışmanlık Psikolojisi Danışmanlık Psikolojisi
1) A A
2) A A
3) A A
4) A A
5) A A
6) A A
7) A A
8) A A
9) A A
10) A A
11) A A
12) A A
13) A A
14) A A
15) A A
16) A A

Sources

Course Notes / Textbooks: Psikolojik Danışmanlık Becerileri, Gerard Egan, Kaknüs Yayınları
References: Psikolojik Danışmanlık Becerileri, Gerard Egan, Kaknüs Yayınları

Course-Program Learning Outcome Relationship

Learning Outcomes

1

2

3

Program Outcomes
1) Adequate knowledge in mathematics, science and engineering subjects pertaining to the relevant discipline; ability to use theoretical and applied information in these areas to model and solve engineering problems.
2) Ability to identify, formulate, and solve complex engineering problems; ability to select and apply proper analysis and modelling methods for this purpose.
3) Ability to design a complex system, process, device or product under realistic constraints and conditions, in such a way so as to meet the desired result; ability to apply modern design methods for this purpose. (Realistic constraints and conditions may include factors such as economic and environmental issues, sustainability, manufacturability, ethics, health, safety issues, and social and political issues according to the nature of the design.)
4) Ability to devise, select, and use modern techniques and tools needed for engineering practice; ability to employ information technologies effectively.
5) Ability to design and conduct experiments, gather data, analyse and interpret results for investigating engineering problems.
6) Ability to work efficiently in intra-disciplinary and multi-disciplinary teams; ability to work individually.
7) Ability to communicate effectively i Turkish, both orally and in writing; knowledge of a minimum of one foreign language.
8) Recognition of the need for lifelong learning; ability to access information, to follow developments in science and technology, and to continue to educate him/herself.
9) Awareness of professional and ethical responsibility.
10) Information about business life practices such as project management, risk management, and change management; awareness of entrepreneurship, innovation, and sustainable development.
11) Knowledge about contemporary issues and the global and societal effects of engineering practices on health, environment, and safety; awareness of the legal consequences of engineering solutions.

Course - Learning Outcome Relationship

No Effect 1 Lowest 2 Low 3 Average 4 High 5 Highest
           
Program Outcomes Level of Contribution
1) Adequate knowledge in mathematics, science and engineering subjects pertaining to the relevant discipline; ability to use theoretical and applied information in these areas to model and solve engineering problems.
2) Ability to identify, formulate, and solve complex engineering problems; ability to select and apply proper analysis and modelling methods for this purpose.
3) Ability to design a complex system, process, device or product under realistic constraints and conditions, in such a way so as to meet the desired result; ability to apply modern design methods for this purpose. (Realistic constraints and conditions may include factors such as economic and environmental issues, sustainability, manufacturability, ethics, health, safety issues, and social and political issues according to the nature of the design.)
4) Ability to devise, select, and use modern techniques and tools needed for engineering practice; ability to employ information technologies effectively.
5) Ability to design and conduct experiments, gather data, analyse and interpret results for investigating engineering problems.
6) Ability to work efficiently in intra-disciplinary and multi-disciplinary teams; ability to work individually.
7) Ability to communicate effectively i Turkish, both orally and in writing; knowledge of a minimum of one foreign language.
8) Recognition of the need for lifelong learning; ability to access information, to follow developments in science and technology, and to continue to educate him/herself.
9) Awareness of professional and ethical responsibility.
10) Information about business life practices such as project management, risk management, and change management; awareness of entrepreneurship, innovation, and sustainable development.
11) Knowledge about contemporary issues and the global and societal effects of engineering practices on health, environment, and safety; awareness of the legal consequences of engineering solutions.

Learning Activity and Teaching Methods

Lesson
Reading
Q&A / Discussion
Case Study

Assessment & Grading Methods and Criteria

Written Exam (Open-ended questions, multiple choice, true-false, matching, fill in the blanks, sequencing)
Observation

Assessment & Grading

Semester Requirements Number of Activities Level of Contribution
Attendance 1 % 10
Midterms 1 % 40
Final 1 % 50
total % 100
PERCENTAGE OF SEMESTER WORK % 50
PERCENTAGE OF FINAL WORK % 50
total % 100

Workload and ECTS Credit Grading

Activities Number of Activities Workload
Course Hours 16 48
Application 15 30
Study Hours Out of Class 16 48
Presentations / Seminar 7 14
Homework Assignments 16 32
Midterms 1 3
Paper Submission 8 24
Final 1 3
Total Workload 202