CE419 Istanbul Okan UniversityDegree Programs Civil Engineering (English)General Information For StudentsDiploma SupplementErasmus Policy StatementNational Qualifications
Civil Engineering (English)
Bachelor TR-NQF-HE: Level 6 QF-EHEA: First Cycle EQF-LLL: Level 6

General course introduction information

Course Code: CE419
Course Name: Groundwater Hydraulics
Course Semester: Fall
Course Credits:
Theoretical Practical Credit ECTS
3 0 3 5
Language of instruction: EN
Course Requisites:
Does the Course Require Work Experience?: No
Type of course: Department Elective
Course Level:
Bachelor TR-NQF-HE:6. Master`s Degree QF-EHEA:First Cycle EQF-LLL:6. Master`s Degree
Mode of Delivery: Face to face
Course Coordinator : Prof. Dr. ATIL BULU
Course Lecturer(s):
Course Assistants:

Course Objective and Content

Course Objectives: The aim of the course is to give information about underground flow and transport and to teach the analysis of groundwater by modelling.
Course Content: The analysis and design of underground flow and transport systems will be covered in this course.

Learning Outcomes

The students who have succeeded in this course;
Learning Outcomes
1 - Knowledge
Theoretical - Conceptual
1) Students who successfully complete this course; Will be able to define the basics of groundwater engineering. Will be able to describe soil properties. Will be able to design subsurface infrastructures. will be able to analyze underground flows. will be able to analyze subsurface pollutant transport.
2 - Skills
Cognitive - Practical
3 - Competences
Communication and Social Competence
Learning Competence
Field Specific Competence
Competence to Work Independently and Take Responsibility

Lesson Plan

Week Subject Related Preparation
1) Geological Formation of Groundwater
2) Introduction to Groundwater Flow and Transport Processes
3) Soil Properties and Moisture Movement in the Unsaturated Region
4) İnfiltration
5) Well Hydraulics and Aquifer Tests
6) Well Design and Construction
7) Sea Water Inflow to Coastal Aquifers, Groundwater and Heat Flow
8) Hydrological Characterization Using Geophysical Models
9) Midterm
10) Geophysical and Tracer Characterization Methods
11) Geostatics: Interpolation and Inverse Problems
12) Groundwater Pollutants
13) Non-reactive Pollutant Transport in the Saturated Zone
14) Reactive Pollutant Transport in the Saturated Zone

Sources

Course Notes / Textbooks: The Handbook of Groundwater Engineering, Second Edition, Jacques W. Delleur, CRC Press, 2006, ISBN: 9780849343162.
References: Groundwater Engineering, Yiqun Tang, Jie Zhou, Ping Yang, Jingjing Yan, Nianqing Zhou, Springer Environmental Science and Engineering, 2017, ISBN: 978-981-10-0668-5.

Course-Program Learning Outcome Relationship

Learning Outcomes

1

Program Outcomes
1) Adequate knowledge in mathematics, science and engineering subjects pertaining to the relevant discipline; ability to use theoretical and applied information in these areas to model and solve engineering problems.
2) Ability to identify, formulate, and solve complex engineering problems; ability to select and apply proper analysis and modelling methods for this purpose.
3) Ability to design a complex system, process, device or product under realistic constraints and conditions, in such a way so as to meet the desired result; ability to apply modern design methods for this purpose. (Realistic constraints and conditions may include factors such as economic and environmental issues, sustainability, manufacturability, ethics, health, safety issues, and social and political issues according to the nature of the design.)
4) Ability to select and use modern techniques and tools needed for analyzing and solving complex problems encountered in engineering practice; ability to employ information technologies effectively.
5) Ability to design and conduct experiments, gather data, analyze and interpret results for investigating complex engineering problems or discipline specific research questions.
6) Ability to work efficiently in intra-disciplinary and multi-disciplinary teams; ability to work individually.
7) Ability to communicate effectively, both orally and in writing; knowledge of a minimum of one foreign language; ability to write effective reports and comprehend written reports, prepare design and production reports, make effective presentations, and give and receive clear and intelligible instructions.
8) Recognition of the need for lifelong learning; ability to access information, to follow developments in science and technology, and to continue to educate him/herself.
9) Knowledge on behavior according ethical principles, professional and ethical responsibility and standards used in engineering practices.
10) Knowledge about business life practices such as project management, risk management, and change management; awareness in entrepreneurship, innovation; knowledge about sustainable development.
11) Knowledge about contemporary issues and the global and societal effects of engineering practices on health, environment, and safety; awareness of the legal consequences of engineering solutions.

Course - Learning Outcome Relationship

No Effect 1 Lowest 2 Low 3 Average 4 High 5 Highest
           
Program Outcomes Level of Contribution
1) Adequate knowledge in mathematics, science and engineering subjects pertaining to the relevant discipline; ability to use theoretical and applied information in these areas to model and solve engineering problems.
2) Ability to identify, formulate, and solve complex engineering problems; ability to select and apply proper analysis and modelling methods for this purpose.
3) Ability to design a complex system, process, device or product under realistic constraints and conditions, in such a way so as to meet the desired result; ability to apply modern design methods for this purpose. (Realistic constraints and conditions may include factors such as economic and environmental issues, sustainability, manufacturability, ethics, health, safety issues, and social and political issues according to the nature of the design.)
4) Ability to select and use modern techniques and tools needed for analyzing and solving complex problems encountered in engineering practice; ability to employ information technologies effectively.
5) Ability to design and conduct experiments, gather data, analyze and interpret results for investigating complex engineering problems or discipline specific research questions.
6) Ability to work efficiently in intra-disciplinary and multi-disciplinary teams; ability to work individually.
7) Ability to communicate effectively, both orally and in writing; knowledge of a minimum of one foreign language; ability to write effective reports and comprehend written reports, prepare design and production reports, make effective presentations, and give and receive clear and intelligible instructions.
8) Recognition of the need for lifelong learning; ability to access information, to follow developments in science and technology, and to continue to educate him/herself.
9) Knowledge on behavior according ethical principles, professional and ethical responsibility and standards used in engineering practices.
10) Knowledge about business life practices such as project management, risk management, and change management; awareness in entrepreneurship, innovation; knowledge about sustainable development.
11) Knowledge about contemporary issues and the global and societal effects of engineering practices on health, environment, and safety; awareness of the legal consequences of engineering solutions.

Learning Activity and Teaching Methods

Individual study and homework
Homework
Problem Solving

Assessment & Grading Methods and Criteria

Assessment & Grading

Semester Requirements Number of Activities Level of Contribution
Homework Assignments 1 % 20
Midterms 1 % 40
Final 1 % 40
total % 100
PERCENTAGE OF SEMESTER WORK % 60
PERCENTAGE OF FINAL WORK % 40
total % 100

Workload and ECTS Credit Grading

Activities Number of Activities Duration (Hours) Workload
Course Hours 14 3 42
Study Hours Out of Class 14 6 84
Homework Assignments 2 5 10
Midterms 1 2 2
Final 1 2 2
Total Workload 140