MATH114 Mathematics IIIstanbul Okan UniversityDegree Programs Automotive Engineering (English)General Information For StudentsDiploma SupplementErasmus Policy StatementNational Qualifications
Automotive Engineering (English)
Bachelor TR-NQF-HE: Level 6 QF-EHEA: First Cycle EQF-LLL: Level 6

General course introduction information

Course Code: MATH114
Course Name: Mathematics II
Course Semester: Spring
Course Credits:
Theoretical Practical Credit ECTS
3 2 4 6
Language of instruction: EN
Course Requisites: MATH113 - Mathematics I
Does the Course Require Work Experience?: No
Type of course: Compulsory
Course Level:
Bachelor TR-NQF-HE:6. Master`s Degree QF-EHEA:First Cycle EQF-LLL:6. Master`s Degree
Mode of Delivery: Face to face
Course Coordinator : Dr.Öğr.Üyesi MESERET TUBA GÜLPINAR
Course Lecturer(s): Dr.Öğr.Üyesi ASUMAN ÖZER
Prof. Dr. VASFİ ELDEM
Prof. Dr. SEZGİN SEZER
Prof. Dr. HASAN ÖZEKES
Course Assistants:

Course Objective and Content

Course Objectives: The aim of this course to gain basic knowladge and abilities about techniques of Integration, improper integrals, infinite sequences and series, convergence tests, power series, radius of convergence and interval of convergence, term-by-term differentiation and integration of power series, vectors in 3-space, dot product and cross product of vectors, equations of lines and planes in space, quadratic surfaces, functions of several variables and their limits, continuity and partial derivatives, chain rule, directional derivatives, tangent planes and normal lines, local and absolute extrema, Lagrange multipliers, double and triple integrals, polar coordinates, change of variables, cylindrical and spherical coordinates to the students.
Course Content: This course will investigate techniques of Integration, improper integrals, infinite sequences and series, convergence tests, power series, radius of convergence and interval of convergence, term-by-term differentiation and integration of power series, vectors in 3-space, dot product and cross product of vectors, equations of lines and planes in space, quadratic surfaces, functions of several variables and their limits, continuity and partial derivatives, chain rule, directional derivatives, tangent planes and normal lines, local and absolute extrema, Lagrange multipliers, double and triple integrals, polar coordinates, change of variables, cylindrical and spherical coordinates.

Learning Outcomes

The students who have succeeded in this course;
Learning Outcomes
1 - Knowledge
Theoretical - Conceptual
1) Evaluate integrals, using the basic rules of integration and other techniques such as integration by parts, trigonometric substitution, and partial fraction decomposion and determine the convergence of improper integrals.
2) Able to calculate the limits of infinite sequences and sum of infinite series and use various test to determine the convergence. Able to calculate the radius and interval of convergence of power series.
3) Able to perform vector operations such as dot product, the cross product, and the projection of a vector onto another vector and derive the equations of lines and planes in space.
4) Able to describe and sketch the domain and the range of functions with several variables and determine the existence of the limits and continuity of these functions. Evaluate the partial derivatives, directional derivatives, extreme values, and use them to solve optimization problems.
5) Able to evaluate the multiple integrals over general regions by using substitution and obtain the area of a surface or volume of a solid by using multiple integrals.
2 - Skills
Cognitive - Practical
3 - Competences
Communication and Social Competence
Learning Competence
Field Specific Competence
Competence to Work Independently and Take Responsibility

Lesson Plan

Week Subject Related Preparation
1) Techniques of Integration Lecture Notes
2) Techniques of Integration Lecture Notes
3) Infinite Sequences and Series Lecture Notes
4) Infinite Sequences and Series Lecture Notes
5) Infinite Sequences and Series Lecture Notes
6) Vectors and Geometry of Space Lecture Notes
7) Vectors and Geometry of Space Lecture Notes
8) Partial Derivatives Lecture Notes
9)
10) Partial Derivatives Lecture Notes
11) Multiple Integrals Lecture Notes
12) Multiple Integrals Lecture Notes
13) Multiple Integrals Lecture Notes
14) Review Lecture Notes

Sources

Course Notes / Textbooks: Thomas’ Calculus, 13th Edition
George B. Thomas, Maurice D. Weir, Joel R. Hass
Pearson Education Inc.
References: A Complete Course Calculus, 8th Edition.
Robert A. Adams, Christopher Essex
Pearson Canada Inc.
ISBN 978: 0321781079

Course-Program Learning Outcome Relationship

Learning Outcomes

1

2

3

4

5

Program Outcomes
1) Sufficient knowledge in mathematics, science and engineering related to their branches; and the ability to apply theoretical and practical knowledge in these areas to model and solve engineering problems.
2) The ability to identify, formulate, and solve complex engineering problems; selecting and applying appropriate analysis and modeling methods for this purpose.
3) The ability to design a complex system, process, device or product under realistic constraints and conditions to meet specific requirements; the ability to apply modern design methods for this purpose. (Realistic constraints and conditions include such issues as economy, environmental issues, sustainability, manufacturability, ethics, health, safety, social and political issues, according to the nature of design.)
4) Ability to develop, select and use modern techniques and tools necessary for engineering applications; ability to use information technologies effectively.
5) Ability to design experiments, conduct experiments, collect data, analyze and interpret results to examine engineering problems or discipline-specific research topics.
6) The ability to work effectively in disciplinary and multidisciplinary teams; individual work skill.
7) Effective communication skills in Turkish oral and written communication; at least one foreign language knowledge; ability to write effective reports and understand written reports, to prepare design and production reports, to make effective presentations, to give and receive clear and understandable instructions.
8) Awareness of the need for lifelong learning; access to knowledge, ability to follow developments in science and technology, and constant self-renewal.
9) Conform to ethical principles, and standards of professional and ethical responsibility; be informed about the standards used in engineering applications.
10) Awareness of applications in business, such as project management, risk management and change management; awareness of entrepreneurship, and innovation; information about sustainable development.
11) Information about the universal and social health, environmental and safety effects of engineering applications and the ways in which contemporary problems are reflected in the engineering field; awareness of the legal consequences of engineering solutions.
12) Knowledge on advanced calculus, including differential equations applicable to automotive engineering; familiarity with statistics and linear algebra; knowledge on chemistry, calculus-based physics, dynamics, structural mechanics, structure and properties of materials, fluid dynamics, heat transfer, manufacturing processes, electronics and control, design of vehicle elements, vehicle dynamics, vehicle power train systems, automotive related regulations and vehicle validation/verification tests; ability to integrate and apply this knowledge to solve multidisciplinary automotive problems; ability to apply theoretical, experimental and simulation methods and, computer aided design techniques in the field of automotive engineering; ability to work in the field of vehicle design and manufacturing.

Course - Learning Outcome Relationship

No Effect 1 Lowest 2 Low 3 Average 4 High 5 Highest
           
Program Outcomes Level of Contribution
1) Sufficient knowledge in mathematics, science and engineering related to their branches; and the ability to apply theoretical and practical knowledge in these areas to model and solve engineering problems. 4
2) The ability to identify, formulate, and solve complex engineering problems; selecting and applying appropriate analysis and modeling methods for this purpose. 3
3) The ability to design a complex system, process, device or product under realistic constraints and conditions to meet specific requirements; the ability to apply modern design methods for this purpose. (Realistic constraints and conditions include such issues as economy, environmental issues, sustainability, manufacturability, ethics, health, safety, social and political issues, according to the nature of design.) 2
4) Ability to develop, select and use modern techniques and tools necessary for engineering applications; ability to use information technologies effectively.
5) Ability to design experiments, conduct experiments, collect data, analyze and interpret results to examine engineering problems or discipline-specific research topics.
6) The ability to work effectively in disciplinary and multidisciplinary teams; individual work skill.
7) Effective communication skills in Turkish oral and written communication; at least one foreign language knowledge; ability to write effective reports and understand written reports, to prepare design and production reports, to make effective presentations, to give and receive clear and understandable instructions.
8) Awareness of the need for lifelong learning; access to knowledge, ability to follow developments in science and technology, and constant self-renewal.
9) Conform to ethical principles, and standards of professional and ethical responsibility; be informed about the standards used in engineering applications.
10) Awareness of applications in business, such as project management, risk management and change management; awareness of entrepreneurship, and innovation; information about sustainable development.
11) Information about the universal and social health, environmental and safety effects of engineering applications and the ways in which contemporary problems are reflected in the engineering field; awareness of the legal consequences of engineering solutions.
12) Knowledge on advanced calculus, including differential equations applicable to automotive engineering; familiarity with statistics and linear algebra; knowledge on chemistry, calculus-based physics, dynamics, structural mechanics, structure and properties of materials, fluid dynamics, heat transfer, manufacturing processes, electronics and control, design of vehicle elements, vehicle dynamics, vehicle power train systems, automotive related regulations and vehicle validation/verification tests; ability to integrate and apply this knowledge to solve multidisciplinary automotive problems; ability to apply theoretical, experimental and simulation methods and, computer aided design techniques in the field of automotive engineering; ability to work in the field of vehicle design and manufacturing. 2

Learning Activity and Teaching Methods

Individual study and homework
Reading
Homework
Problem Solving
Q&A / Discussion

Assessment & Grading Methods and Criteria

Written Exam (Open-ended questions, multiple choice, true-false, matching, fill in the blanks, sequencing)
Homework

Assessment & Grading

Semester Requirements Number of Activities Level of Contribution
Homework Assignments 5 % 20
Midterms 2 % 40
Final 1 % 40
total % 100
PERCENTAGE OF SEMESTER WORK % 60
PERCENTAGE OF FINAL WORK % 40
total % 100

Workload and ECTS Credit Grading

Activities Number of Activities Duration (Hours) Workload
Course Hours 15 5 75
Study Hours Out of Class 15 2 30
Homework Assignments 5 5 25
Midterms 2 10 20
Final 1 15 15
Total Workload 165