PSI304 Field Studies IIIstanbul Okan UniversityDegree Programs Geomatic EngineeringGeneral Information For StudentsDiploma SupplementErasmus Policy StatementNational Qualifications
Geomatic Engineering
Bachelor TR-NQF-HE: Level 6 QF-EHEA: First Cycle EQF-LLL: Level 6

General course introduction information

Course Code: PSI304
Course Name: Field Studies II
Course Semester: Spring
Course Credits:
Theoretical Practical Credit ECTS
2 2 3 6
Language of instruction:
Course Requisites:
Does the Course Require Work Experience?: No
Type of course: University Elective
Course Level:
Bachelor TR-NQF-HE:6. Master`s Degree QF-EHEA:First Cycle EQF-LLL:6. Master`s Degree
Mode of Delivery: Face to face
Course Coordinator : Dr.Öğr.Üyesi ZEYNEP HALE AKSUNA
Course Lecturer(s): Öğr.Gör. ELİF NAZLI AKBAŞ
Course Assistants:

Course Objective and Content

Course Objectives: This course provides students an opportunity to observe children in nurseries and other relevant children-centered institutions. The aim is to help students to learn about child development through interactions with young children at different ages.
Course Content: This course provides students an opportunity to observe children in nurseries and other relevant children-centered institutions. The aim is to help students to learn about child development through interactions with young children at different ages.

Learning Outcomes

The students who have succeeded in this course;
Learning Outcomes
1 - Knowledge
Theoretical - Conceptual
1) A
2) A
3) A
2 - Skills
Cognitive - Practical
3 - Competences
Communication and Social Competence
Learning Competence
Field Specific Competence
Competence to Work Independently and Take Responsibility

Lesson Plan

Week Subject Related Preparation
1) Methodology for Data Collection/Research Reporting for Projects Lecturer's notes and related articles
1) Practical and Ethical Issues in Research Lecturer's notes and related articles
2) Forming a Research Question and Research Patterns Lecturer's notes and related articles
3) How to Scan Literature /APA format Lecturer's notes and related articles
4) Presentation and Evaluation of Research Proposals Lecturer's notes and related articles
5) Sampling and Data Collection Methods Lecturer's notes and related articles
6) Evaluation of Scales to be Used for Projects Lecturer's notes and related articles
7) Introduction to Data Collection / Research Reporting for Projects Lecturer's notes and related articles
8) Methodology for Data Collection/Research Reporting for Projects Lecturer's notes and related articles
9) Data Collection for Projects/Results and Discussion in Reporting the Research/Presentation of the Report Lecturer's notes and related articles
10) Data Analysis / Presentation of the Methodology Section of the Report Lecturer's notes and related articles
11) Data Analytics Lecturer's notes and related articles
12) Presenting Data Analytics Lecturer's notes and related articles
13) Presentation of Projects Lecturer's notes and related articles
14) Presentation of Projects Lecturer's notes and related articles
15) All topics covered in the course for 14 weeks Lecturer's notes and related articles

Sources

Course Notes / Textbooks: Dersin öğretim görevlisinin notları ve ilgili makaleler
References: Dersin öğretim görevlisinin notları ve ilgili makaleler

Course-Program Learning Outcome Relationship

Learning Outcomes

1

2

3

Program Outcomes
1) Awareness of professional and ethical responsibility.
2) Adequate knowledge in mathematics, science and engineering subjects pertaining to the relevant discipline; ability to use theoretical and applied information in these areas to model and solve engineering problems.
3) Ability to communicate effectively i Turkish, both orally and in writing; knowledge of a minimum of one foreign language.
4) Information about business life practices such as project management, risk management, and change management; awareness of entrepreneurship, innovation, and sustainable development.
5) Ability to design a complex system, process, device or product under realistic constraints and conditions, in such a way so as to meet the desired result; ability to apply modern design methods for this purpose. (Realistic constraints and conditions may include factors such as economic and environmental issues, sustainability, manufacturability, ethics, health, safety isuues, and social and political issues according to the nature of the design.)
6) Ability to work efficiently in intra-disciplinary and multi-disciplinary teams; ability to work individually.
7) Ability to devise, select, and use modern techniques and tools needed for engineering practice; ability to employ information technologies effectively.
8) Ability to identify, formulate, and solve complex engineering problems; ability to select and apply proper analysis and modelling methods for this purpose.
9) Knowledge about contemporary issues and the global and societal effects of engineering practices on health, environment, and safety; awareness of the legal consequences of engineering solutions.
10) Recognition of the need for lifelong learning; ability to access information, to follow developments in science and technology, and to continue to educate him/herself.
11) Ability to design and conduct experiments, gather data, analyse and interpret results for investigating engineering problems.

Course - Learning Outcome Relationship

No Effect 1 Lowest 2 Low 3 Average 4 High 5 Highest
           
Program Outcomes Level of Contribution
1) Awareness of professional and ethical responsibility.
2) Adequate knowledge in mathematics, science and engineering subjects pertaining to the relevant discipline; ability to use theoretical and applied information in these areas to model and solve engineering problems.
3) Ability to communicate effectively i Turkish, both orally and in writing; knowledge of a minimum of one foreign language.
4) Information about business life practices such as project management, risk management, and change management; awareness of entrepreneurship, innovation, and sustainable development.
5) Ability to design a complex system, process, device or product under realistic constraints and conditions, in such a way so as to meet the desired result; ability to apply modern design methods for this purpose. (Realistic constraints and conditions may include factors such as economic and environmental issues, sustainability, manufacturability, ethics, health, safety isuues, and social and political issues according to the nature of the design.)
6) Ability to work efficiently in intra-disciplinary and multi-disciplinary teams; ability to work individually.
7) Ability to devise, select, and use modern techniques and tools needed for engineering practice; ability to employ information technologies effectively.
8) Ability to identify, formulate, and solve complex engineering problems; ability to select and apply proper analysis and modelling methods for this purpose.
9) Knowledge about contemporary issues and the global and societal effects of engineering practices on health, environment, and safety; awareness of the legal consequences of engineering solutions.
10) Recognition of the need for lifelong learning; ability to access information, to follow developments in science and technology, and to continue to educate him/herself.
11) Ability to design and conduct experiments, gather data, analyse and interpret results for investigating engineering problems.

Learning Activity and Teaching Methods

Field Study
Group study and homework
Reading
Homework
Internship/Onsite Practice

Assessment & Grading Methods and Criteria

Application
Individual Project
Group project

Assessment & Grading

Semester Requirements Number of Activities Level of Contribution
Midterms 2 % 50
Final 1 % 50
total % 100
PERCENTAGE OF SEMESTER WORK % 50
PERCENTAGE OF FINAL WORK % 50
total % 100

Workload and ECTS Credit Grading

Activities Number of Activities Workload
Course Hours 13 39
Application 16 48
Special Course Internship (Work Placement) 16 48
Study Hours Out of Class 8 24
Midterms 2 6
Final 1 3
Total Workload 168