PSY304 Field Studies II Istanbul Okan UniversityDegree Programs Civil Engineering (English)General Information For StudentsDiploma SupplementErasmus Policy StatementNational Qualifications
Civil Engineering (English)
Bachelor TR-NQF-HE: Level 6 QF-EHEA: First Cycle EQF-LLL: Level 6

General course introduction information

Course Code: PSY304
Course Name: Field Studies II
Course Semester: Spring
Course Credits:
Theoretical Practical Credit ECTS
2 2 3 6
Language of instruction:
Course Requisites:
Does the Course Require Work Experience?: No
Type of course: University Elective
Course Level:
Bachelor TR-NQF-HE:6. Master`s Degree QF-EHEA:First Cycle EQF-LLL:6. Master`s Degree
Mode of Delivery: Face to face
Course Coordinator : Dr.Öğr.Üyesi ZEYNEP HALE AKSUNA
Course Lecturer(s):
Course Assistants:

Course Objective and Content

Course Objectives: The aim of this course is for students to design an empirical study and put it into practice.
Course Content: This course includes students to design an empirical study and put it into practice.

Learning Outcomes

The students who have succeeded in this course;
Learning Outcomes
1 - Knowledge
Theoretical - Conceptual
1) Gaining the necessary knowledge and skills to implement an independent research project, covering the entire process from the proposal stage to the reporting stage.
2) Gaining knowledge and skills in preparing a research question, scanning and evaluating the relevant literature, and presenting a research proposal.
3) Learn to collect data for research, analyze the collected data and report the research.
4) To be able to carry out scientific research in the field of psychology independently, to be able to discuss the results by writing scientific articles and interpreting the results.
5) Gaining the skill and habit of reading and discussing about the researches done in the field.
2 - Skills
Cognitive - Practical
3 - Competences
Communication and Social Competence
Learning Competence
Field Specific Competence
Competence to Work Independently and Take Responsibility

Lesson Plan

Week Subject Related Preparation
1) Practical and Ethical Issues in Research Notes of the lecturer in charge of the course and related articles
2) Forming a Research Question and Research Patterns Notes of the lecturer in charge of the course and related articles
3) How to Scan Literature /APA format Notes of the lecturer in charge of the course and related articles
4) Presentation and Evaluation of Research Proposals Notes of the lecturer in charge of the course and related articles
5) Sampling and Data Collection Methods Notes of the lecturer in charge of the course and related articles
6) Evaluation of Scales to be Used for Projects Notes of the lecturer in charge of the course and related articles
7) Introduction to Data Collection / Research Reporting for Projects Notes of the lecturer in charge of the course and related articles
8) Methodology for Data Collection / Research Reporting for Projects Notes of the lecturer in charge of the course and related articles
9) Data Collection for Projects/Results and Discussion in Reporting the Research/Presentation of the Report Notes of the lecturer in charge of the course and related articles
10) Data Analysis / Presentation of the Methodology Section of the Report Notes of the lecturer in charge of the course and related articles
11) Data Analysis Notes of the lecturer in charge of the course and related articles
12) Presenting Data Analytics Notes of the lecturer in charge of the course and related articles
13) Presentation of Projects Notes of the lecturer in charge of the course and related articles
14) Presentation of Projects Notes of the lecturer in charge of the course and related articles
15) Revision Notes of the lecturer in charge of the course and related articles
16) Final Notes of the lecturer in charge of the course and related articles

Sources

Course Notes / Textbooks: • Meltzoff, J. (1998). Critical Thinking about Research. Washington DC. : American Psychological Assocation.
• Amerikan Psikoloji Derneği Yayım Kılavuzu (5. Baskı). Çev. Cenk Pamay. İstanbul: Kaknüs Yayınları.
References: • Meltzoff, J. (1998). Critical Thinking about Research. Washington DC. : American Psychological Assocation.
• Amerikan Psikoloji Derneği Yayım Kılavuzu (5. Baskı). Çev. Cenk Pamay. İstanbul: Kaknüs Yayınları.

Course-Program Learning Outcome Relationship

Learning Outcomes

1

2

3

4

5

Program Outcomes
1) Adequate knowledge in mathematics, science and engineering subjects pertaining to the relevant discipline; ability to use theoretical and applied information in these areas to model and solve engineering problems.
2) Ability to identify, formulate, and solve complex engineering problems; ability to select and apply proper analysis and modelling methods for this purpose.
3) Ability to design a complex system, process, device or product under realistic constraints and conditions, in such a way so as to meet the desired result; ability to apply modern design methods for this purpose. (Realistic constraints and conditions may include factors such as economic and environmental issues, sustainability, manufacturability, ethics, health, safety issues, and social and political issues according to the nature of the design.)
4) Ability to select and use modern techniques and tools needed for analyzing and solving complex problems encountered in engineering practice; ability to employ information technologies effectively.
5) Ability to design and conduct experiments, gather data, analyze and interpret results for investigating complex engineering problems or discipline specific research questions.
6) Ability to work efficiently in intra-disciplinary and multi-disciplinary teams; ability to work individually.
7) Ability to communicate effectively, both orally and in writing; knowledge of a minimum of one foreign language; ability to write effective reports and comprehend written reports, prepare design and production reports, make effective presentations, and give and receive clear and intelligible instructions.
8) Recognition of the need for lifelong learning; ability to access information, to follow developments in science and technology, and to continue to educate him/herself.
9) Knowledge on behavior according ethical principles, professional and ethical responsibility and standards used in engineering practices.
10) Knowledge about business life practices such as project management, risk management, and change management; awareness in entrepreneurship, innovation; knowledge about sustainable development.
11) Knowledge about contemporary issues and the global and societal effects of engineering practices on health, environment, and safety; awareness of the legal consequences of engineering solutions.

Course - Learning Outcome Relationship

No Effect 1 Lowest 2 Low 3 Average 4 High 5 Highest
           
Program Outcomes Level of Contribution
1) Adequate knowledge in mathematics, science and engineering subjects pertaining to the relevant discipline; ability to use theoretical and applied information in these areas to model and solve engineering problems.
2) Ability to identify, formulate, and solve complex engineering problems; ability to select and apply proper analysis and modelling methods for this purpose.
3) Ability to design a complex system, process, device or product under realistic constraints and conditions, in such a way so as to meet the desired result; ability to apply modern design methods for this purpose. (Realistic constraints and conditions may include factors such as economic and environmental issues, sustainability, manufacturability, ethics, health, safety issues, and social and political issues according to the nature of the design.)
4) Ability to select and use modern techniques and tools needed for analyzing and solving complex problems encountered in engineering practice; ability to employ information technologies effectively.
5) Ability to design and conduct experiments, gather data, analyze and interpret results for investigating complex engineering problems or discipline specific research questions.
6) Ability to work efficiently in intra-disciplinary and multi-disciplinary teams; ability to work individually.
7) Ability to communicate effectively, both orally and in writing; knowledge of a minimum of one foreign language; ability to write effective reports and comprehend written reports, prepare design and production reports, make effective presentations, and give and receive clear and intelligible instructions.
8) Recognition of the need for lifelong learning; ability to access information, to follow developments in science and technology, and to continue to educate him/herself.
9) Knowledge on behavior according ethical principles, professional and ethical responsibility and standards used in engineering practices.
10) Knowledge about business life practices such as project management, risk management, and change management; awareness in entrepreneurship, innovation; knowledge about sustainable development.
11) Knowledge about contemporary issues and the global and societal effects of engineering practices on health, environment, and safety; awareness of the legal consequences of engineering solutions.

Learning Activity and Teaching Methods

Expression
Brainstorming/ Six tihnking hats
Individual study and homework
Lesson
Reading
Homework
Project preparation
Report Writing
Q&A / Discussion

Assessment & Grading Methods and Criteria

Written Exam (Open-ended questions, multiple choice, true-false, matching, fill in the blanks, sequencing)
Homework
Individual Project
Presentation
Reporting

Assessment & Grading

Semester Requirements Number of Activities Level of Contribution
Homework Assignments 1 % 5
Presentation 1 % 10
Project 1 % 40
Final 1 % 40
Paper Submission 1 % 5
total % 100
PERCENTAGE OF SEMESTER WORK % 60
PERCENTAGE OF FINAL WORK % 40
total % 100

Workload and ECTS Credit Grading

Activities Number of Activities Duration (Hours) Workload
Course Hours 3 9 27
Presentations / Seminar 1 20 20
Project 1 45 45
Homework Assignments 1 20 20
Paper Submission 1 20 20
Final 1 48 48
Total Workload 180