CE316 Fundamentals of Traffic EngineeringIstanbul Okan UniversityDegree Programs Food Engineering (English)General Information For StudentsDiploma SupplementErasmus Policy StatementNational Qualifications
Food Engineering (English)
Bachelor TR-NQF-HE: Level 6 QF-EHEA: First Cycle EQF-LLL: Level 6

General course introduction information

Course Code: CE316
Course Name: Fundamentals of Traffic Engineering
Course Semester: Fall
Course Credits:
Theoretical Practical Credit ECTS
3 0 3 5
Language of instruction: EN
Course Requisites:
Does the Course Require Work Experience?: No
Type of course: Compulsory
Course Level:
Bachelor TR-NQF-HE:6. Master`s Degree QF-EHEA:First Cycle EQF-LLL:6. Master`s Degree
Mode of Delivery: Face to face
Course Coordinator : Assoc. Prof. SELİM DÜNDAR
Course Lecturer(s): Öğr.Gör. ABDURRAHMAN CAN İMAL
Course Assistants:

Course Objective and Content

Course Objectives: The purpose of this course is to introduce the fundamentals of traffic engineering. The topics covered in this class includes: Basic parameters of traffic flow. Basic relationship of traffic flow. Data collection methods. Traffic flow models. Microscobic flow models. Capacity and the level of service. Traffic sings. Road markings. Parkings. Intersections. Roundabouts. Traffic signal design.
Course Content: Understand traffic behavior
Collect traffic data
Analyze traffic data
Model the highway traffic
Design traffic projects
Design traffic signals
Design intersections
Design parking areas

Learning Outcomes

The students who have succeeded in this course;
Learning Outcomes
1 - Knowledge
Theoretical - Conceptual
1) Understand traffic behavior
2 - Skills
Cognitive - Practical
1) Collects, analysez and models traffic data
2) Design traffic projects
3) Designs intersections and traffic signals
4) Design parking areas
3 - Competences
Communication and Social Competence
Learning Competence
Field Specific Competence
Competence to Work Independently and Take Responsibility

Lesson Plan

Week Subject Related Preparation
1) Introduce the needs for and the methods used on traffic engineering
2) Fundamental parameters of traffic flow
3) Fundamental relations of traffic flow
4) Traffic data collection
5) Traffic flow models
6) Microscopic traffic flow modelling
7) Capacity Level of Service
8) Traffic signs
9) Midterm exam
10) Road markings
11) Parking
12) Traffic intersections
13) Traffic rotaries
14) Traffic signal design

Sources

Course Notes / Textbooks: “Traffic Engineering 4th Edition”, by Roger P. Roses, Elena S. Prassas, William R. McShane, Prentice Hall, 2011.
ISBN-9780136135739
“Highway Capacity Manual 5th Edition (2010)”, Transportation Research Board, 2010.
ISBN-9780309160773
References: Yok

Course-Program Learning Outcome Relationship

Learning Outcomes

1

2

3

4

5

Program Outcomes
1) Has sufficient background in mathematics, science and engineering related fields.
2) Uses the theoretical and practical knowledge in mathematics, science and their fields together for engineering solutions.
3) Identifies, formulates and solves engineering problems, selects and applies appropriate analytical methods and modeling techniques for this purpose.
4) Analyze a system, system component or process and design it under realistic constraints to meet desired requirements; apply modern design methods accordingly.
5) Selects and uses the modern techniques and tools necessary for engineering applications.
6) Design experiments, conduct experiments, collect data, analyze and interpret results.
7) Works individually and in multi-disciplinary teams.
8) Accesses information and conducts resource research for this purpose, uses databases and other information sources.
9) Accesses information and conducts resource research for this purpose, uses databases and other information sources.
10) Accesses information and conducts resource research for this purpose, uses databases and other information sources.
11) Uses the theoretical and practical knowledge in mathematics, science and their fields together for engineering solutions.
12) Identifies, formulates and solves engineering problems, selects and applies appropriate analytical methods and modeling techniques for this purpose.
13) Analyze a system, system component or process and design it under realistic constraints to meet desired requirements; apply modern design methods accordingly.
14) Selects and uses the modern techniques and tools necessary for engineering applications.
15) Works individually and in multi-disciplinary teams
16) Uses information and communication technologies together with computer software required by the field at least Advanced Level of European Computer Skills License.
17) Communicate effectively verbally and in writing; use a foreign language at least at level B1 of the European Language Portfolio.
18) Communicates using technical drawing.
19) Accesses information and conducts resource research for this purpose, uses databases and other information sources.
20) Becomes aware of the universal and social effects of engineering solutions and applications; entrepreneurship and innovation and have knowledge about the problems of the age.
21) Has professional and ethical responsibility.
22) Have awareness of project management, workplace practices, employee health, environmental and occupational safety; the legal consequences of engineering applications.
23) Demonstrates awareness of the universal and social impact of engineering solutions and applications; is aware of entrepreneurship and innovation and has knowledge about the problems of the age.

Course - Learning Outcome Relationship

No Effect 1 Lowest 2 Low 3 Average 4 High 5 Highest
           
Program Outcomes Level of Contribution
1) Has sufficient background in mathematics, science and engineering related fields.
2) Uses the theoretical and practical knowledge in mathematics, science and their fields together for engineering solutions.
3) Identifies, formulates and solves engineering problems, selects and applies appropriate analytical methods and modeling techniques for this purpose.
4) Analyze a system, system component or process and design it under realistic constraints to meet desired requirements; apply modern design methods accordingly.
5) Selects and uses the modern techniques and tools necessary for engineering applications.
6) Design experiments, conduct experiments, collect data, analyze and interpret results.
7) Works individually and in multi-disciplinary teams.
8) Accesses information and conducts resource research for this purpose, uses databases and other information sources.
9) Accesses information and conducts resource research for this purpose, uses databases and other information sources.
10) Accesses information and conducts resource research for this purpose, uses databases and other information sources.
11) Uses the theoretical and practical knowledge in mathematics, science and their fields together for engineering solutions.
12) Identifies, formulates and solves engineering problems, selects and applies appropriate analytical methods and modeling techniques for this purpose.
13) Analyze a system, system component or process and design it under realistic constraints to meet desired requirements; apply modern design methods accordingly.
14) Selects and uses the modern techniques and tools necessary for engineering applications.
15) Works individually and in multi-disciplinary teams
16) Uses information and communication technologies together with computer software required by the field at least Advanced Level of European Computer Skills License.
17) Communicate effectively verbally and in writing; use a foreign language at least at level B1 of the European Language Portfolio.
18) Communicates using technical drawing.
19) Accesses information and conducts resource research for this purpose, uses databases and other information sources.
20) Becomes aware of the universal and social effects of engineering solutions and applications; entrepreneurship and innovation and have knowledge about the problems of the age.
21) Has professional and ethical responsibility.
22) Have awareness of project management, workplace practices, employee health, environmental and occupational safety; the legal consequences of engineering applications.
23) Demonstrates awareness of the universal and social impact of engineering solutions and applications; is aware of entrepreneurship and innovation and has knowledge about the problems of the age.

Learning Activity and Teaching Methods

Field Study
Individual study and homework
Lesson
Group study and homework
Homework
Problem Solving
Application (Modelling, Design, Model, Simulation, Experiment etc.)
Case Study

Assessment & Grading Methods and Criteria

Written Exam (Open-ended questions, multiple choice, true-false, matching, fill in the blanks, sequencing)
Homework
Application
Individual Project
Reporting

Assessment & Grading

Semester Requirements Number of Activities Level of Contribution
Homework Assignments 1 % 10
Project 1 % 10
Midterms 1 % 30
Final 1 % 50
total % 100
PERCENTAGE OF SEMESTER WORK % 50
PERCENTAGE OF FINAL WORK % 50
total % 100

Workload and ECTS Credit Grading

Activities Number of Activities Duration (Hours) Workload
Course Hours 14 3 42
Study Hours Out of Class 14 6 84
Project 1 5 5
Homework Assignments 1 5 5
Midterms 1 1 1
Paper Submission 1 5 5
Final 1 1 1
Total Workload 143