BIL391 Database Management SystemIstanbul Okan UniversityDegree Programs Computer EngineeringGeneral Information For StudentsDiploma SupplementErasmus Policy StatementNational Qualifications
Computer Engineering
Bachelor TR-NQF-HE: Level 6 QF-EHEA: First Cycle EQF-LLL: Level 6

General course introduction information

Course Code: BIL391
Course Name: Database Management System
Course Semester: Fall
Course Credits:
Theoretical Practical Credit ECTS
3 0 3 7
Language of instruction: TR
Course Requisites:
Does the Course Require Work Experience?: No
Type of course: Compulsory
Course Level:
Bachelor TR-NQF-HE:6. Master`s Degree QF-EHEA:First Cycle EQF-LLL:6. Master`s Degree
Mode of Delivery: Face to face
Course Coordinator : Prof. Dr. PINAR YILDIRIM
Course Lecturer(s): Dr. BİLİNMİYOR BEKLER
Prof. Dr. PINAR YILDIRIM
Course Assistants:

Course Objective and Content

Course Objectives: The purpose of the database management systems course is to educate students about the main concepts of database management systems and SQL language and as well as introduce to develop database by using relational database system.
Course Content: Introduction to database systems. Entity-relationship modeling. Relational model. Data description and query languages. Normal forms and database design. Physical design and access strategies. Security, integrity and reliability. Database design and implementation project.

Learning Outcomes

The students who have succeeded in this course;
Learning Outcomes
1 - Knowledge
Theoretical - Conceptual
1) Ability to explain the concepts of database management systems
2) Ability to describe the different issues involved in the design and implementation of a database systems.
3.1) Ability to explain conceptual, logical, physical and relational database modeling.
3) Ability to use Structured Query Language (SQL).
4) Ability to develop and manage databases.
2 - Skills
Cognitive - Practical
3 - Competences
Communication and Social Competence
Learning Competence
Field Specific Competence
Competence to Work Independently and Take Responsibility

Lesson Plan

Week Subject Related Preparation
1) • Disadvantages of file processing • Problems with data dependency • Problems with data redundancy • Advantages of database approach • Database management system • Costs and risks of database management system • Elements of database system • Enterprise data model • Database development life cycle • Database schema • People involved Reading chapter 1-4
2) • Describe importance of data modeling. • Explain how to write good names and definitions for entities, relationships, and attributes. • Define how to distinguish unary, binary, and ternary relationships. • Explain model different types of attributes, entities, relationships, and cardinalities. • Describe how to draw E-R diagrams for common business situations. • Explain how to convert many-to-many relationships to associative entities. Reading chapter 5-7
3) • Supertypes and subtypes. • Relationships and subtypes. • Generalization and specialization. • Constraints Reading chapter 8
4) • Components of relation model. • Relation. • Correspondence with E-R model. • Key fields. • Integrity constraints. • Transforming E-R and EER diagrams to relations. Reading chapter 10
5) • Physical database design. • Designing fields. • Choosing data types. • Field data integrity Reading chapter 11
6) • Relational database example. Reading chapter 12.
7)  Unary Relational Operations: SELECT and PROJECT.  Relational Algebra Operations from Set Theory.  Binary Relational Operations: JOIN and DIVISION.
8) Midterm1
9) • SQL overview. • History of SQL. • Benefits of SQL. • SQL environment. • DDL, DML, DCL and database development process. • SQL database definition. • Steps in table creation. • Data integrity controls. • Changing and updating tables. • Table queries using select. Reading chapter 15-18.
10) • Insert, update and delete expressions. • Processing multiple tables. • Natural join. • Outer join. • Processing multiple tables using subqueries. Reading chapter 15-18.
11) Midterm2
12) • Data normalization. • Well-structured relations. • Anomalies in tables. • Functional dependencies and keys. • First normal form. • Second normal form. • Third normal form. Reading chapter 13-14.
13) • Database Applications.
14) • Project presentation.
15) Final exam.

Sources

Course Notes / Textbooks: Veritabanı Sistemleri Dersi Teoriden Pratiğe
Nergiz Ercil Çağıltay, Gül Tokdemir
@2010|Seçkin Yayıncılık|1.baskı
ISBN 978-605-61091-0-2
References: Modern Database Management
Jeffrey A. Hoffer, V. Ramesh, Heikki Topi
@2013|Prentice Hall|10th Edition
ISBN 0-13-608839-2

Course-Program Learning Outcome Relationship

Learning Outcomes

1

2

4

5

Program Outcomes
1) Information on project management and practices in business life such as risk management and change management; awareness about entrepreneurship, innovation and sustainable development.
2) Sufficient knowledge in mathematics, science and engineering related to their branches; the ability to apply theoretical and practical knowledge in these areas to model and solve engineering problems.
3) The ability to identify, formulate, and solve complex engineering problems; selecting and applying appropriate analysis and modeling methods for this purpose.
4) The ability to design a complex system, process, device or product under realistic constraints and conditions to meet specific requirements; the ability to apply modern design methods for this purpose. (Realistic constraints and conditions include such issues as economy, environmental issues, sustainability, manufacturability, ethics, health, safety, social and political issues, according to the nature of design.)
5) Ability to develop, select and use modern techniques and tools necessary for engineering applications; ability to use information technologies effectively.
6) Ability to design experiments, conduct experiments, collect data, analyze and interpret results for examination of engineering problems.
7) Effective communication skills in Turkish oral and written communication; at least one foreign language knowledge.
8) Awareness of the need for lifelong learning; access to knowledge, ability to follow developments in science and technology, and constant self-renewal.
9) Professional and ethical responsibility.
10) Information on the effects of engineering applications on health, environment and safety in the universal and social dimensions and the problems of the times; awareness of the legal consequences of engineering solutions.
11) The ability to work effectively in disciplinary and multidisciplinary teams; individual work skill.

Course - Learning Outcome Relationship

No Effect 1 Lowest 2 Low 3 Average 4 High 5 Highest
           
Program Outcomes Level of Contribution
1) Information on project management and practices in business life such as risk management and change management; awareness about entrepreneurship, innovation and sustainable development.
2) Sufficient knowledge in mathematics, science and engineering related to their branches; the ability to apply theoretical and practical knowledge in these areas to model and solve engineering problems. 4
3) The ability to identify, formulate, and solve complex engineering problems; selecting and applying appropriate analysis and modeling methods for this purpose. 4
4) The ability to design a complex system, process, device or product under realistic constraints and conditions to meet specific requirements; the ability to apply modern design methods for this purpose. (Realistic constraints and conditions include such issues as economy, environmental issues, sustainability, manufacturability, ethics, health, safety, social and political issues, according to the nature of design.) 3
5) Ability to develop, select and use modern techniques and tools necessary for engineering applications; ability to use information technologies effectively.
6) Ability to design experiments, conduct experiments, collect data, analyze and interpret results for examination of engineering problems. 3
7) Effective communication skills in Turkish oral and written communication; at least one foreign language knowledge.
8) Awareness of the need for lifelong learning; access to knowledge, ability to follow developments in science and technology, and constant self-renewal.
9) Professional and ethical responsibility.
10) Information on the effects of engineering applications on health, environment and safety in the universal and social dimensions and the problems of the times; awareness of the legal consequences of engineering solutions.
11) The ability to work effectively in disciplinary and multidisciplinary teams; individual work skill.

Learning Activity and Teaching Methods

Lesson
Project preparation

Assessment & Grading Methods and Criteria

Written Exam (Open-ended questions, multiple choice, true-false, matching, fill in the blanks, sequencing)
Individual Project

Assessment & Grading

Semester Requirements Number of Activities Level of Contribution
Project 1 % 15
Midterms 2 % 40
Final 1 % 45
total % 100
PERCENTAGE OF SEMESTER WORK % 55
PERCENTAGE OF FINAL WORK % 45
total % 100

Workload and ECTS Credit Grading

Activities Number of Activities Duration (Hours) Workload
Course Hours 14 3 42
Project 1 40 40
Midterms 2 40 80
Final 1 45 45
Total Workload 207