Computer Engineering (English) | |||||
Bachelor | TR-NQF-HE: Level 6 | QF-EHEA: First Cycle | EQF-LLL: Level 6 |
Course Code: | CENG319 | ||||||||
Course Name: | Algorithm Analysis | ||||||||
Course Semester: |
Fall |
||||||||
Course Credits: |
|
||||||||
Language of instruction: | EN | ||||||||
Course Requisites: | |||||||||
Does the Course Require Work Experience?: | No | ||||||||
Type of course: | Compulsory | ||||||||
Course Level: |
|
||||||||
Mode of Delivery: | Face to face | ||||||||
Course Coordinator : | Prof. Dr. PINAR YILDIRIM | ||||||||
Course Lecturer(s): |
|
||||||||
Course Assistants: |
Course Objectives: | The aim of this course is to gain algorithmic thinking skills and apply to basic programming problems, to analyze the complexity of the designed algorithm. |
Course Content: | The concept of algorithm, algorithmic complexity, recursion concept, divide-and-manage, sorting and search algorithms |
The students who have succeeded in this course;
|
Week | Subject | Related Preparation |
1) | Introduction to Algorithms | |
2) | Asymtotic Analysis | |
3) | Divide-and-Conquer | |
4) | Probabilistic Analysis and Random Algorithms | |
5) | Sorting and Sequence Statistics | |
6) | Sorting and Sequence Statistics | |
7) | Review | |
8) | Midterm Examination | |
9) | Basic Data Structures | |
10) | Bilateral Search Trees | |
11) | Red-Black Trees (Basic Definition, Insertion) | |
13) | Red-Black Trees (Data Deletion) | |
14) | Review | |
15) | Final Exam |
Course Notes / Textbooks: | Introduction to Algorithms Thomas H. C., Charles E. L., Ronald L. R. and Clifford S. 2009, 3rd Edition, MIT Press ISBN: 978-0-262-03384-8 |
References: | MIT Opencourse: Introduction to Algorithms. http://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-006-introduction-to-algorithms-fall-2011/ |
Learning Outcomes | 1 |
2 |
3 |
4 |
||||||
---|---|---|---|---|---|---|---|---|---|---|
Program Outcomes | ||||||||||
1) Sufficient knowledge in mathematics, science and engineering related to their branches; the ability to apply theoretical and practical knowledge in these areas to model and solve engineering problems. | ||||||||||
2) The ability to identify, formulate, and solve complex engineering problems; selecting and applying appropriate analysis and modeling methods for this purpose. | ||||||||||
3) The ability to design a complex system, process, device or product under realistic constraints and conditions to meet specific requirements; the ability to apply modern design methods for this purpose. (Realistic constraints and conditions include such issues as economy, environmental issues, sustainability, manufacturability, ethics, health, safety, social and political issues, according to the nature of design.) | ||||||||||
4) Ability to develop, select and use modern techniques and tools necessary for engineering applications; ability to use information technologies effectively. | ||||||||||
5) Ability to design experiments, conduct experiments, collect data, analyze and interpret results for examination of engineering problems. | ||||||||||
6) The ability to work effectively in disciplinary and multidisciplinary teams; individual work skill. | ||||||||||
7) Effective communication skills in oral and written communication; at least one foreign language knowledge. | ||||||||||
8) Awareness of the need for lifelong learning; access to knowledge, ability to follow developments in science and technology, and constant self-renewal. | ||||||||||
9) Professional and ethical responsibility. | ||||||||||
10) Information on project management and practices in business life such as risk management and change management; awareness about entrepreneurship, innovation and sustainable development. | ||||||||||
11) Information on the effects of engineering applications on health, environment and safety in the universal and social dimensions and the problems of the times; awareness of the legal consequences of engineering solutions. |
No Effect | 1 Lowest | 2 Low | 3 Average | 4 High | 5 Highest |
Program Outcomes | Level of Contribution | |
1) | Sufficient knowledge in mathematics, science and engineering related to their branches; the ability to apply theoretical and practical knowledge in these areas to model and solve engineering problems. | |
2) | The ability to identify, formulate, and solve complex engineering problems; selecting and applying appropriate analysis and modeling methods for this purpose. | |
3) | The ability to design a complex system, process, device or product under realistic constraints and conditions to meet specific requirements; the ability to apply modern design methods for this purpose. (Realistic constraints and conditions include such issues as economy, environmental issues, sustainability, manufacturability, ethics, health, safety, social and political issues, according to the nature of design.) | |
4) | Ability to develop, select and use modern techniques and tools necessary for engineering applications; ability to use information technologies effectively. | |
5) | Ability to design experiments, conduct experiments, collect data, analyze and interpret results for examination of engineering problems. | |
6) | The ability to work effectively in disciplinary and multidisciplinary teams; individual work skill. | |
7) | Effective communication skills in oral and written communication; at least one foreign language knowledge. | |
8) | Awareness of the need for lifelong learning; access to knowledge, ability to follow developments in science and technology, and constant self-renewal. | |
9) | Professional and ethical responsibility. | |
10) | Information on project management and practices in business life such as risk management and change management; awareness about entrepreneurship, innovation and sustainable development. | |
11) | Information on the effects of engineering applications on health, environment and safety in the universal and social dimensions and the problems of the times; awareness of the legal consequences of engineering solutions. |
Expression | |
Individual study and homework | |
Lesson | |
Reading | |
Homework | |
Problem Solving | |
Web Based Learning |
Written Exam (Open-ended questions, multiple choice, true-false, matching, fill in the blanks, sequencing) | |
Homework |
Semester Requirements | Number of Activities | Level of Contribution |
Homework Assignments | 1 | % 10 |
Midterms | 1 | % 40 |
Final | 1 | % 50 |
total | % 100 | |
PERCENTAGE OF SEMESTER WORK | % 50 | |
PERCENTAGE OF FINAL WORK | % 50 | |
total | % 100 |
Activities | Number of Activities | Duration (Hours) | Workload |
Course Hours | 13 | 3 | 39 |
Study Hours Out of Class | 13 | 2 | 26 |
Homework Assignments | 1 | 10 | 10 |
Midterms | 1 | 36 | 36 |
Final | 1 | 36 | 36 |
Total Workload | 147 |