CENG471 Game Software DevelopmentIstanbul Okan UniversityDegree Programs Computer Engineering (English)General Information For StudentsDiploma SupplementErasmus Policy StatementNational Qualifications
Computer Engineering (English)
Bachelor TR-NQF-HE: Level 6 QF-EHEA: First Cycle EQF-LLL: Level 6

General course introduction information

Course Code: CENG471
Course Name: Game Software Development
Course Semester: Spring
Course Credits:
Theoretical Practical Credit ECTS
3 0 3 7
Language of instruction: EN
Course Requisites:
Does the Course Require Work Experience?: No
Type of course: Department Elective
Course Level:
Bachelor TR-NQF-HE:6. Master`s Degree QF-EHEA:First Cycle EQF-LLL:6. Master`s Degree
Mode of Delivery: Face to face
Course Coordinator : Prof. Dr. BEKİR TEVFİK AKGÜN
Course Lecturer(s): Dr.Öğr.Üyesi NİGAR TUĞBAGÜL ALTAN GÜLGÜN
Course Assistants:

Course Objective and Content

Course Objectives: A. Explaining the Elective Course Topic
B. Using Elective Course Methods / Tools
C. To produce solutions in Elective Course.
Course Content: History of games and current game trends. Basics of game design and development. Basics of game design. Simulation creation. The use of artificial intelligence in games. The place of physics and mathematics in games. Computer graphics concepts used in games. Human computer interaction in game development.

Learning Outcomes

The students who have succeeded in this course;
Learning Outcomes
1 - Knowledge
Theoretical - Conceptual
1) A. Explains Elective Course Subject.
2) B. Uses Elective Course Methods / Tools.
2 - Skills
Cognitive - Practical
1) C. Elective Course produces solutions.
3 - Competences
Competence to Work Independently and Take Responsibility
Field Specific Competence
Learning Competence
Communication and Social Competence

Lesson Plan

Week Subject Related Preparation
1) History of games and current game trends Course Notes
2) Basics of game design and development Course Notes
3) Basics of game design and development Course Notes
4) Basics of game design Course notes
5) Creating simulation Course notes
6) Midterm Course notes
7) The use of artificial intelligence in games Course notes
8) The use of artificial intelligence in games Course notes
9) The place of physics and mathematics in games Course Notes
10) Computer graphics concepts used in games Course notes
11) Computer graphics concepts used in games Course notes
12) Human computer interaction in game development Course notes
13) Midterm Course note
14) Human computer interaction in game development Course notes
15) Final Exam Course Notes

Sources

Course Notes / Textbooks: Ders notları
References: Course Notes

Course-Program Learning Outcome Relationship

Learning Outcomes

1

2

3

Program Outcomes
1) Sufficient knowledge in mathematics, science and engineering related to their branches; the ability to apply theoretical and practical knowledge in these areas to model and solve engineering problems.
2) The ability to identify, formulate, and solve complex engineering problems; selecting and applying appropriate analysis and modeling methods for this purpose.
3) The ability to design a complex system, process, device or product under realistic constraints and conditions to meet specific requirements; the ability to apply modern design methods for this purpose. (Realistic constraints and conditions include such issues as economy, environmental issues, sustainability, manufacturability, ethics, health, safety, social and political issues, according to the nature of design.)
4) Ability to develop, select and use modern techniques and tools necessary for engineering applications; ability to use information technologies effectively.
5) Ability to design experiments, conduct experiments, collect data, analyze and interpret results for examination of engineering problems.
6) The ability to work effectively in disciplinary and multidisciplinary teams; individual work skill.
7) Effective communication skills in Turkish oral and written communication; at least one foreign language knowledge.
8) Awareness of the need for lifelong learning; access to knowledge, ability to follow developments in science and technology, and constant self-renewal.
9) Professional and ethical responsibility.
10) Information on project management and practices in business life such as risk management and change management; awareness about entrepreneurship, innovation and sustainable development.
11) Information on the effects of engineering applications on health, environment and safety in the universal and social dimensions and the problems of the times; awareness of the legal consequences of engineering solutions.

Course - Learning Outcome Relationship

No Effect 1 Lowest 2 Low 3 Average 4 High 5 Highest
           
Program Outcomes Level of Contribution
1) Sufficient knowledge in mathematics, science and engineering related to their branches; the ability to apply theoretical and practical knowledge in these areas to model and solve engineering problems.
2) The ability to identify, formulate, and solve complex engineering problems; selecting and applying appropriate analysis and modeling methods for this purpose.
3) The ability to design a complex system, process, device or product under realistic constraints and conditions to meet specific requirements; the ability to apply modern design methods for this purpose. (Realistic constraints and conditions include such issues as economy, environmental issues, sustainability, manufacturability, ethics, health, safety, social and political issues, according to the nature of design.)
4) Ability to develop, select and use modern techniques and tools necessary for engineering applications; ability to use information technologies effectively.
5) Ability to design experiments, conduct experiments, collect data, analyze and interpret results for examination of engineering problems.
6) The ability to work effectively in disciplinary and multidisciplinary teams; individual work skill.
7) Effective communication skills in Turkish oral and written communication; at least one foreign language knowledge.
8) Awareness of the need for lifelong learning; access to knowledge, ability to follow developments in science and technology, and constant self-renewal.
9) Professional and ethical responsibility.
10) Information on project management and practices in business life such as risk management and change management; awareness about entrepreneurship, innovation and sustainable development.
11) Information on the effects of engineering applications on health, environment and safety in the universal and social dimensions and the problems of the times; awareness of the legal consequences of engineering solutions.

Learning Activity and Teaching Methods

Expression
Brainstorming/ Six tihnking hats
Individual study and homework
Q&A / Discussion

Assessment & Grading Methods and Criteria

Written Exam (Open-ended questions, multiple choice, true-false, matching, fill in the blanks, sequencing)
Homework

Assessment & Grading

Semester Requirements Number of Activities Level of Contribution
Midterms 2 % 40
Final 1 % 60
total % 100
PERCENTAGE OF SEMESTER WORK % 40
PERCENTAGE OF FINAL WORK % 60
total % 100

Workload and ECTS Credit Grading

Activities Number of Activities Duration (Hours) Workload
Course Hours 15 3 45
Midterms 2 30 60
Final 1 40 40
Total Workload 145