Computer Engineering (English) | |||||
Bachelor | TR-NQF-HE: Level 6 | QF-EHEA: First Cycle | EQF-LLL: Level 6 |
Course Code: | CENG489 | ||||||||
Course Name: | Pattern Recognition | ||||||||
Course Semester: | Fall | ||||||||
Course Credits: |
|
||||||||
Language of instruction: | EN | ||||||||
Course Requisites: | |||||||||
Does the Course Require Work Experience?: | No | ||||||||
Type of course: | Compulsory | ||||||||
Course Level: |
|
||||||||
Mode of Delivery: | Face to face | ||||||||
Course Coordinator : | Prof. Dr. BEKİR TEVFİK AKGÜN | ||||||||
Course Lecturer(s): |
|
||||||||
Course Assistants: |
Course Objectives: | Understanding and applying pattern recognition techniques and foundations |
Course Content: | Introduction - Pattern Recognition Definitions, Data Sets, Pattern Recognition Different Paradigms, Pattern and Classes, Metric and Non-Metric Proximity Measures, Feature Extraction, Selection, Close Neighbor Classifiers and Variants, Different Approaches to the Efficient Algorithms Feature for Close Neighbors, Classification of Representations, Selection, Bayes Classifier, Decision Trees, Linear Discriminant Function, Support Vector Machines, Clustering, Clustering Big Data Sets, Combination of Classifiers, Applications Prototype Different Approaches - Document Recognition |
The students who have succeeded in this course;
|
Week | Subject | Related Preparation |
1) | What is pattern recognition? | Course Notes |
2) | Introduction to Probability, Bayes Rule | Course Notes |
3) | Random Variables, Expected Value, Average, Variance | Course Notes |
4) | Bayes Decision Rule | Course notes |
5) | Naive Bayes, Bayes Networks | Course notes |
6) | k-NN classifier | Course notes |
7) | Regression | Course notes |
8) | Midterm Exam | Course notes |
9) | Clustering | Course Notes |
10) | PCA | Course notes |
11) | Decision Trees | Course notes |
12) | Linear Classifiers | Course notes |
13) | SVM | Course note |
14) | Deep learning | Course notes |
15) | Final Exam | Course Notes |
Course Notes / Textbooks: | Theodoridis, K. Koutroumbas, Pattern Recognition, Elsevier, 4th Edition 2- R.O. Duda, P.E. Hart and D.G. Stork, Pattern Classification, 2nd edition |
References: | None |
Learning Outcomes | 1 |
2 |
4 |
3 |
5 |
|||||
---|---|---|---|---|---|---|---|---|---|---|
Program Outcomes | ||||||||||
1) Sufficient knowledge in mathematics, science and engineering related to their branches; the ability to apply theoretical and practical knowledge in these areas to model and solve engineering problems. | ||||||||||
2) The ability to identify, formulate, and solve complex engineering problems; selecting and applying appropriate analysis and modeling methods for this purpose. | ||||||||||
3) The ability to design a complex system, process, device or product under realistic constraints and conditions to meet specific requirements; the ability to apply modern design methods for this purpose. (Realistic constraints and conditions include such issues as economy, environmental issues, sustainability, manufacturability, ethics, health, safety, social and political issues, according to the nature of design.) | ||||||||||
4) Ability to develop, select and use modern techniques and tools necessary for engineering applications; ability to use information technologies effectively. | ||||||||||
5) Ability to design experiments, conduct experiments, collect data, analyze and interpret results for examination of engineering problems. | ||||||||||
6) The ability to work effectively in disciplinary and multidisciplinary teams; individual work skill. | ||||||||||
7) Effective communication skills in Turkish oral and written communication; at least one foreign language knowledge. | ||||||||||
8) Awareness of the need for lifelong learning; access to knowledge, ability to follow developments in science and technology, and constant self-renewal. | ||||||||||
9) Professional and ethical responsibility. | ||||||||||
10) Information on project management and practices in business life such as risk management and change management; awareness about entrepreneurship, innovation and sustainable development. | ||||||||||
11) Information on the effects of engineering applications on health, environment and safety in the universal and social dimensions and the problems of the times; awareness of the legal consequences of engineering solutions. |
No Effect | 1 Lowest | 2 Low | 3 Average | 4 High | 5 Highest |
Program Outcomes | Level of Contribution | |
1) | Sufficient knowledge in mathematics, science and engineering related to their branches; the ability to apply theoretical and practical knowledge in these areas to model and solve engineering problems. | |
2) | The ability to identify, formulate, and solve complex engineering problems; selecting and applying appropriate analysis and modeling methods for this purpose. | |
3) | The ability to design a complex system, process, device or product under realistic constraints and conditions to meet specific requirements; the ability to apply modern design methods for this purpose. (Realistic constraints and conditions include such issues as economy, environmental issues, sustainability, manufacturability, ethics, health, safety, social and political issues, according to the nature of design.) | |
4) | Ability to develop, select and use modern techniques and tools necessary for engineering applications; ability to use information technologies effectively. | |
5) | Ability to design experiments, conduct experiments, collect data, analyze and interpret results for examination of engineering problems. | |
6) | The ability to work effectively in disciplinary and multidisciplinary teams; individual work skill. | |
7) | Effective communication skills in Turkish oral and written communication; at least one foreign language knowledge. | |
8) | Awareness of the need for lifelong learning; access to knowledge, ability to follow developments in science and technology, and constant self-renewal. | |
9) | Professional and ethical responsibility. | |
10) | Information on project management and practices in business life such as risk management and change management; awareness about entrepreneurship, innovation and sustainable development. | |
11) | Information on the effects of engineering applications on health, environment and safety in the universal and social dimensions and the problems of the times; awareness of the legal consequences of engineering solutions. |
Expression | |
Brainstorming/ Six tihnking hats | |
Individual study and homework | |
Lesson | |
Q&A / Discussion |
Written Exam (Open-ended questions, multiple choice, true-false, matching, fill in the blanks, sequencing) | |
Homework |
Semester Requirements | Number of Activities | Level of Contribution |
Homework Assignments | 1 | % 20 |
Midterms | 1 | % 30 |
Final | 1 | % 50 |
total | % 100 | |
PERCENTAGE OF SEMESTER WORK | % 50 | |
PERCENTAGE OF FINAL WORK | % 50 | |
total | % 100 |
Activities | Number of Activities | Duration (Hours) | Workload |
Course Hours | 14 | 3 | 42 |
Study Hours Out of Class | 14 | 3 | 42 |
Homework Assignments | 1 | 30 | 30 |
Midterms | 1 | 40 | 40 |
Final | 1 | 50 | 50 |
Total Workload | 204 |