Mechanical Engineering (English) | |||||
Bachelor | TR-NQF-HE: Level 6 | QF-EHEA: First Cycle | EQF-LLL: Level 6 |
Course Code: | ENG308 | ||||||||
Course Name: | Energy Policy | ||||||||
Course Semester: | Fall | ||||||||
Course Credits: |
|
||||||||
Language of instruction: | EN | ||||||||
Course Requisites: | |||||||||
Does the Course Require Work Experience?: | No | ||||||||
Type of course: | Compulsory | ||||||||
Course Level: |
|
||||||||
Mode of Delivery: | Face to face | ||||||||
Course Coordinator : | Prof. Dr. RAMAZAN NEJAT TUNCAY | ||||||||
Course Lecturer(s): |
|
||||||||
Course Assistants: |
Course Objectives: | Examining the world energy policies in detail |
Course Content: | Details and geographical distribution of main energy resources, energy production and technology use, reference and alternative scenarios in energy supply-demand, important actors and factors affecting energy prices, basic principles and actors of international energy policies, energy security and geopolitical concepts, Turkey's energy policies international relations in energy policies |
The students who have succeeded in this course;
|
Week | Subject | Related Preparation |
1) | Introduction & Syllabus | None |
2) | Overview of Energy & Resources | None |
3) | Energy Policies & International Relations | None |
4) | Energy Supply- Demand & Security | None |
5) | Energy Geopolitics | None |
6) | Major Producers, Consumers & Traders | None |
7) | Energy Supply & Demand Scenarios | None |
8) | Major Energy Conflicts in the World | None |
9) | US Energy Policies and Implementations | None |
10) | Energy Policies of China and Developing World | none |
11) | Energy policies of EU Countries | None |
12) | Russia & Ukraine Crisis and EU Energy Security | None |
13) | Energy Policies of Turkey | None |
14) | Presentations | None |
Course Notes / Textbooks: | Yok |
References: | None |
Learning Outcomes | 1 |
2 |
||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Program Outcomes | ||||||||||||
1) Sufficient knowledge in mathematics, science and engineering related to their branches; and the ability to apply theoretical and practical knowledge in these areas to model and solve engineering problems. | ||||||||||||
2) The ability to identify, formulate, and solve complex engineering problems; selecting and applying appropriate analysis and modeling methods for this purpose. | ||||||||||||
3) The ability to design a complex system, process, device or product under realistic constraints and conditions to meet specific requirements; the ability to apply modern design methods for this purpose. (Realistic constraints and conditions include such issues as economy, environmental issues, sustainability, manufacturability, ethics, health, safety, social and political issues, according to the nature of design.) | ||||||||||||
4) Ability to develop, select and use modern techniques and tools necessary for engineering applications; ability to use information technologies effectively. | ||||||||||||
5) Ability to design experiments, conduct experiments, collect data, analyze and interpret results to examine engineering problems or discipline-specific research topics. | ||||||||||||
6) The ability to work effectively in disciplinary and multidisciplinary teams; individual work skill. | ||||||||||||
7) Effective communication skills in Turkish oral and written communication; at least one foreign language knowledge; ability to write effective reports and understand written reports, to prepare design and production reports, to make effective presentations, to give and receive clear and understandable instructions. | ||||||||||||
8) Awareness of the need for lifelong learning; access to knowledge, ability to follow developments in science and technology, and constant self-renewal. | ||||||||||||
9) Conform to ethical principles, and standards of professional and ethical responsibility; be informed about the standards used in engineering applications. | ||||||||||||
10) Awareness of applications in business, such as project management, risk management and change management; awareness of entrepreneurship, and innovation; information about sustainable development. | ||||||||||||
11) The ability to work effectively in disciplinary and multidisciplinary teams; individual work skill. | ||||||||||||
12) In order to gain depth at least one, physics knowledge based on chemistry knowledge and mathematics; advanced mathematical knowledge, including multivariable mathematical and differential equations; familiarity with statistics and linear algebra. | ||||||||||||
13) The ability to work in both thermal and mechanical systems, including the design and implementation of such systems. |
No Effect | 1 Lowest | 2 Low | 3 Average | 4 High | 5 Highest |
Program Outcomes | Level of Contribution | |
1) | Sufficient knowledge in mathematics, science and engineering related to their branches; and the ability to apply theoretical and practical knowledge in these areas to model and solve engineering problems. | |
2) | The ability to identify, formulate, and solve complex engineering problems; selecting and applying appropriate analysis and modeling methods for this purpose. | |
3) | The ability to design a complex system, process, device or product under realistic constraints and conditions to meet specific requirements; the ability to apply modern design methods for this purpose. (Realistic constraints and conditions include such issues as economy, environmental issues, sustainability, manufacturability, ethics, health, safety, social and political issues, according to the nature of design.) | |
4) | Ability to develop, select and use modern techniques and tools necessary for engineering applications; ability to use information technologies effectively. | |
5) | Ability to design experiments, conduct experiments, collect data, analyze and interpret results to examine engineering problems or discipline-specific research topics. | |
6) | The ability to work effectively in disciplinary and multidisciplinary teams; individual work skill. | |
7) | Effective communication skills in Turkish oral and written communication; at least one foreign language knowledge; ability to write effective reports and understand written reports, to prepare design and production reports, to make effective presentations, to give and receive clear and understandable instructions. | |
8) | Awareness of the need for lifelong learning; access to knowledge, ability to follow developments in science and technology, and constant self-renewal. | |
9) | Conform to ethical principles, and standards of professional and ethical responsibility; be informed about the standards used in engineering applications. | |
10) | Awareness of applications in business, such as project management, risk management and change management; awareness of entrepreneurship, and innovation; information about sustainable development. | |
11) | The ability to work effectively in disciplinary and multidisciplinary teams; individual work skill. | |
12) | In order to gain depth at least one, physics knowledge based on chemistry knowledge and mathematics; advanced mathematical knowledge, including multivariable mathematical and differential equations; familiarity with statistics and linear algebra. | |
13) | The ability to work in both thermal and mechanical systems, including the design and implementation of such systems. |
Lesson | |
Homework | |
Report Writing |
Written Exam (Open-ended questions, multiple choice, true-false, matching, fill in the blanks, sequencing) | |
Reporting | |
Bilgisayar Destekli Sunum |
Semester Requirements | Number of Activities | Level of Contribution |
Homework Assignments | 1 | % 10 |
Project | 1 | % 20 |
Midterms | 1 | % 30 |
Final | 1 | % 40 |
total | % 100 | |
PERCENTAGE OF SEMESTER WORK | % 60 | |
PERCENTAGE OF FINAL WORK | % 40 | |
total | % 100 |
Activities | Number of Activities | Duration (Hours) | Workload |
Course Hours | 14 | 3 | 42 |
Presentations / Seminar | 1 | 18 | 18 |
Project | 1 | 40 | 40 |
Homework Assignments | 2 | 6 | 12 |
Midterms | 1 | 16 | 16 |
Final | 1 | 16 | 16 |
Total Workload | 144 |