ECE511 Electromagnetic CompatibilityIstanbul Okan UniversityDegree Programs Advanced Electronics and Communication Technology (English) with thesisGeneral Information For StudentsDiploma SupplementErasmus Policy StatementNational Qualifications
Advanced Electronics and Communication Technology (English) with thesis
Master TR-NQF-HE: Level 7 QF-EHEA: Second Cycle EQF-LLL: Level 7

General course introduction information

Course Code: ECE511
Course Name: Electromagnetic Compatibility
Course Semester: Fall
Course Credits:
Theoretical Practical Credit ECTS
3 0 3 10
Language of instruction: EN
Course Requisites:
Does the Course Require Work Experience?: No
Type of course: Department Elective
Course Level:
Master TR-NQF-HE:7. Master`s Degree QF-EHEA:Second Cycle EQF-LLL:7. Master`s Degree
Mode of Delivery: Face to face
Course Coordinator : Dr.Öğr.Üyesi DİDEM KIVANÇ TÜRELİ
Course Lecturer(s):
Course Assistants:

Course Objective and Content

Course Objectives: To process electromagnetic compatibility issues in electrical and electronics engineering
Course Content: The purpose of this course is about fundamentals of electromagnetic compatibility. Engineering systems, Fundamentals of Electromagnetic compatibility (EMC), Electric and magnetic dipoles, Electromagnetic Interference (EMI), Bio-Electromagnetics (BEM), EMC in Industrial Engineering, EMC in Computer Engineering, EMC in Automotive Industry, EMC in Medical Industry, EMC in Defense Industry, Electromagnetic spectrum, EMC and Noise, EMC and Coupling, Power distribution systems and EMC, Power quality, EMC in Communication and Control Systems, EMC in Telemetry systems, Fiber Optic Cabling and EMC, EMC and Internet, Electronic Conspiracy and EMC, EMC Standards, EMC-EMI Tests and Measurements, Test and Measurement Environments, Open-space, Screened Rooms, Unechoic Chambers, Emission and Susceptibility measurements, EMC and Protection, Grounding, Filtering, Screening, Shielding Effectiveness, EMC and system Design, EMC and Computer Simulations, CE Mark, EMC and Authorized Institutions.

Learning Outcomes

The students who have succeeded in this course;
Learning Outcomes
1 - Knowledge
Theoretical - Conceptual
1) to absorb fundamentals of electromagnetic conpatibility
2 - Skills
Cognitive - Practical
1) understanding of EMC tests and measurements
3 - Competences
Communication and Social Competence
Learning Competence
Field Specific Competence
Competence to Work Independently and Take Responsibility

Lesson Plan

Week Subject Related Preparation
1) Discussion of Syllabus Discussion of examples Example problems
2) Electric dipoles Magnetic dipoles
3) Noise Clutter Interference
4) EMC and Power Quality
5) EMC Standards and Institutions
6) EU and CE Marking
7) EMC Test and Measurement Environments Open Field Test Sites Screened Rooms Unechoic chambers
8) EMC Test and Measurement Devices EMI Receiver DMM Network Analyzer Oscillator Spectrum Analyzer
9) Emission measurements Immunity tests Reporting
10) EMC Antennas Broadband antennas Log Periodic dipoles Horns Half Wavelength dipoles Antenna calibration, Antenna Factor measurement
11) Accreditation
12) EMC and Protection Filtering Shielding/Screening Grounding Cabling
13) EMC and System Design
14) EMC and ModSim

Sources

Course Notes / Textbooks: Clayton R. Paul, Introduction to EMC, John Wiley & Sons, New Jersey, 2006. C. Christopoulos, Principles and techniques of EMC, CRC Press, Taylor & Francis Group, Boca Raton, FL, 2007 L. Sevgi, Textbooks and papers; Internet sources and EMC companies
References: Clayton R. Paul, Introduction to EMC, John Wiley & Sons, New Jersey, 2006. C. Christopoulos, Principles and techniques of EMC, CRC Press, Taylor & Francis Group, Boca Raton, FL, 2007 L. Sevgi, Textbooks and papers; Internet sources and EMC companies

Course-Program Learning Outcome Relationship

Learning Outcomes

1

2

Program Outcomes
1) By carrying out scientific research in their field, graduates evaluate and interpret deeply and broadly, their findings and apply their findings.
2) Graduates have extensive knowledge about current techniques and methods applied in engineering and their limitations.
3) Graduates can complet and implement knowledge using scientific methods using limited or incomplete data; can use the information of different disciplines together.
4) Graduates are aware of new and evolving practices of their profession, examinining new knowledge and learning as necessary
5) Graduates can define and formulate problems related to the field, develop methods to solve them and apply innovative methods in solutions.
6) Graduates develop new and/or original ideas and methods; design complex systems or processes and develop innovative / alternative solutions in their designs.
7) Graduates design and apply theoretical, experimental and model-based research; analyze and investigate the complex problems encountered in this process.
8) Lead in multidisciplinary teams, develop solution approaches in complex situations, work independently and take responsibility.
9) A foreign language communicates verbally and in writing using at least the European Language Portfolio B2 General Level.
10) Transfers the processes and outcomes of their work in a systematic and explicit manner, either written or verbally, in the national or international contexts of that area.
11) Recognize the social, environmental, health, safety, legal aspects of engineering applications, as well as project management and business life practices, and are aware of the limitations they place on engineering applications.
12) Consider social, scientific and ethical values in the collection, interpretation, announcement of data and in all professional activities.

Course - Learning Outcome Relationship

No Effect 1 Lowest 2 Low 3 Average 4 High 5 Highest
           
Program Outcomes Level of Contribution
1) By carrying out scientific research in their field, graduates evaluate and interpret deeply and broadly, their findings and apply their findings.
2) Graduates have extensive knowledge about current techniques and methods applied in engineering and their limitations.
3) Graduates can complet and implement knowledge using scientific methods using limited or incomplete data; can use the information of different disciplines together.
4) Graduates are aware of new and evolving practices of their profession, examinining new knowledge and learning as necessary
5) Graduates can define and formulate problems related to the field, develop methods to solve them and apply innovative methods in solutions.
6) Graduates develop new and/or original ideas and methods; design complex systems or processes and develop innovative / alternative solutions in their designs.
7) Graduates design and apply theoretical, experimental and model-based research; analyze and investigate the complex problems encountered in this process.
8) Lead in multidisciplinary teams, develop solution approaches in complex situations, work independently and take responsibility.
9) A foreign language communicates verbally and in writing using at least the European Language Portfolio B2 General Level.
10) Transfers the processes and outcomes of their work in a systematic and explicit manner, either written or verbally, in the national or international contexts of that area.
11) Recognize the social, environmental, health, safety, legal aspects of engineering applications, as well as project management and business life practices, and are aware of the limitations they place on engineering applications.
12) Consider social, scientific and ethical values in the collection, interpretation, announcement of data and in all professional activities.

Learning Activity and Teaching Methods

Field Study
Problem Solving

Assessment & Grading Methods and Criteria

Written Exam (Open-ended questions, multiple choice, true-false, matching, fill in the blanks, sequencing)
Application

Assessment & Grading

Semester Requirements Number of Activities Level of Contribution
Attendance 10 % 25
Application 10 % 25
Midterms 2 % 25
Final 2 % 25
total % 100
PERCENTAGE OF SEMESTER WORK % 75
PERCENTAGE OF FINAL WORK % 25
total % 100

Workload and ECTS Credit Grading

Activities Number of Activities Duration (Hours) Workload
Course Hours 12 3 36
Application 6 2 12
Midterms 2 2 4
Final 1 2 2
Total Workload 54