EEE523 Clean Energy Technology and Energy Storage SystemsIstanbul Okan UniversityDegree Programs Advanced Electronics and Communication Technology (English) with thesisGeneral Information For StudentsDiploma SupplementErasmus Policy StatementNational Qualifications
Advanced Electronics and Communication Technology (English) with thesis
Master TR-NQF-HE: Level 7 QF-EHEA: Second Cycle EQF-LLL: Level 7

General course introduction information

Course Code: EEE523
Course Name: Clean Energy Technology and Energy Storage Systems
Course Semester: Fall
Course Credits:
Theoretical Practical Credit ECTS
3 0 3 10
Language of instruction: EN
Course Requisites:
Does the Course Require Work Experience?: No
Type of course: Department Elective
Course Level:
Master TR-NQF-HE:7. Master`s Degree QF-EHEA:Second Cycle EQF-LLL:7. Master`s Degree
Mode of Delivery: Face to face
Course Coordinator : Assoc. Prof. ÖMER CİHAN KIVANÇ
Course Lecturer(s): Dr.Öğr.Üyesi ŞİRİN KOÇ
Prof. Dr. RAMAZAN NEJAT TUNCAY
Course Assistants:

Course Objective and Content

Course Objectives: To learn the renewable energy systems and their impacts on electric power system
Course Content: The Fundamentals of Renewable Energy Systems, Their Technical and Economic Impacts on Electric Power Systems and Electricity Markets, Other Technical and Economic Issues

Learning Outcomes

The students who have succeeded in this course;
Learning Outcomes
1 - Knowledge
Theoretical - Conceptual
1) Learning the Fundamentals of Renewable Eenergy Systems
2) Analysis on Technologies and Problems regarding the Grid Integration of Renewable Energy Systems
2 - Skills
Cognitive - Practical
3 - Competences
Communication and Social Competence
Learning Competence
Field Specific Competence
1) Analysis on the impacts of renewable energy systems on power system
Competence to Work Independently and Take Responsibility

Lesson Plan

Week Subject Related Preparation
1) Conventional Energy Systems Course Notes
2) Wind Energy Systems Course Notes
3) Solar Energy Systems Course Notes
4) Other Renewable Energy Systems and Energy Storage Solutions Course Notes
5) Grid Integration of Wind Energy Systems Course Notes
6) Flexibility in Power Systems and Evaluation of Flexibility Requirements in Power Systems with High Penetration of Renewable Energy Systems Course Notes
7) Fundamentals of Power Flow Analysis and the impacts of renewable energy systems based distributed generation units on distribution networks Course Notes
8) Hybrid Use of Renewable Energy Systems Course Notes
9) Application Course Notes
10) Battery Systems Course Notes
11) Battery Systems Course Notes
12) Battery Systems Course Notes
13) Application Course Notes
14) Applicaiton Course Notes

Sources

Course Notes / Textbooks: Renewable and Efficient Electric Power Systems
References: Renewable and Efficient Electric Power Systems

Course-Program Learning Outcome Relationship

Learning Outcomes

1

2

3

Program Outcomes
1) By carrying out scientific research in their field, graduates evaluate and interpret deeply and broadly, their findings and apply their findings.
2) Graduates have extensive knowledge about current techniques and methods applied in engineering and their limitations.
3) Graduates can complet and implement knowledge using scientific methods using limited or incomplete data; can use the information of different disciplines together.
4) Graduates are aware of new and evolving practices of their profession, examinining new knowledge and learning as necessary
5) Graduates can define and formulate problems related to the field, develop methods to solve them and apply innovative methods in solutions.
6) Graduates develop new and/or original ideas and methods; design complex systems or processes and develop innovative / alternative solutions in their designs.
7) Graduates design and apply theoretical, experimental and model-based research; analyze and investigate the complex problems encountered in this process.
8) Lead in multidisciplinary teams, develop solution approaches in complex situations, work independently and take responsibility.
9) A foreign language communicates verbally and in writing using at least the European Language Portfolio B2 General Level.
10) Transfers the processes and outcomes of their work in a systematic and explicit manner, either written or verbally, in the national or international contexts of that area.
11) Recognize the social, environmental, health, safety, legal aspects of engineering applications, as well as project management and business life practices, and are aware of the limitations they place on engineering applications.
12) Consider social, scientific and ethical values in the collection, interpretation, announcement of data and in all professional activities.

Course - Learning Outcome Relationship

No Effect 1 Lowest 2 Low 3 Average 4 High 5 Highest
           
Program Outcomes Level of Contribution
1) By carrying out scientific research in their field, graduates evaluate and interpret deeply and broadly, their findings and apply their findings.
2) Graduates have extensive knowledge about current techniques and methods applied in engineering and their limitations.
3) Graduates can complet and implement knowledge using scientific methods using limited or incomplete data; can use the information of different disciplines together.
4) Graduates are aware of new and evolving practices of their profession, examinining new knowledge and learning as necessary
5) Graduates can define and formulate problems related to the field, develop methods to solve them and apply innovative methods in solutions.
6) Graduates develop new and/or original ideas and methods; design complex systems or processes and develop innovative / alternative solutions in their designs.
7) Graduates design and apply theoretical, experimental and model-based research; analyze and investigate the complex problems encountered in this process.
8) Lead in multidisciplinary teams, develop solution approaches in complex situations, work independently and take responsibility.
9) A foreign language communicates verbally and in writing using at least the European Language Portfolio B2 General Level.
10) Transfers the processes and outcomes of their work in a systematic and explicit manner, either written or verbally, in the national or international contexts of that area.
11) Recognize the social, environmental, health, safety, legal aspects of engineering applications, as well as project management and business life practices, and are aware of the limitations they place on engineering applications.
12) Consider social, scientific and ethical values in the collection, interpretation, announcement of data and in all professional activities.

Learning Activity and Teaching Methods

Lesson
Project preparation

Assessment & Grading Methods and Criteria

Written Exam (Open-ended questions, multiple choice, true-false, matching, fill in the blanks, sequencing)
Individual Project

Assessment & Grading

Semester Requirements Number of Activities Level of Contribution
Project 1 % 50
Final 1 % 50
total % 100
PERCENTAGE OF SEMESTER WORK % 50
PERCENTAGE OF FINAL WORK % 50
total % 100

Workload and ECTS Credit Grading

Activities Number of Activities Duration (Hours) Workload
Course Hours 14 3 42
Project 1 175 175
Final 1 80 80
Total Workload 297