ECE561 Data ConvertersIstanbul Okan UniversityDegree Programs Advanced Electronics and Communication Technology (English) with thesisGeneral Information For StudentsDiploma SupplementErasmus Policy StatementNational Qualifications
Advanced Electronics and Communication Technology (English) with thesis
Master TR-NQF-HE: Level 7 QF-EHEA: Second Cycle EQF-LLL: Level 7

General course introduction information

Course Code: ECE561
Course Name: Data Converters
Course Semester: Spring
Course Credits:
Theoretical Practical Credit ECTS
3 10
Language of instruction: EN
Course Requisites:
Does the Course Require Work Experience?: No
Type of course: Department Elective
Course Level:
Master TR-NQF-HE:7. Master`s Degree QF-EHEA:Second Cycle EQF-LLL:7. Master`s Degree
Mode of Delivery: Face to face
Course Coordinator : Dr.Öğr.Üyesi DİDEM KIVANÇ TÜRELİ
Course Lecturer(s):
Course Assistants:

Course Objective and Content

Course Objectives: This course focuses on Digital to Analog and Analog to Digital converters. Different types of ADC and DACs are explained and their operating techniques are covered.
Course Content: Fundamental parameters of ADC and DAC, Nyquist-Rate DAC, Nyquist-Rate ADC, Oversampling DAC and ADC, Sample and Hold, Voltage and Current References, Comparator

Learning Outcomes

The students who have succeeded in this course;
Learning Outcomes
1 - Knowledge
Theoretical - Conceptual
1) Understanding of fundamental performance parameters of DAC and ADC
2) Understanding of operations of DAC and ADC
3) Ability to analyze DAC and ADC measurement results
4) Ability to design Digital-to-Analog Converters
5) Ability to design Analog-to-Digital Converters
2 - Skills
Cognitive - Practical
3 - Competences
Communication and Social Competence
Learning Competence
Field Specific Competence
Competence to Work Independently and Take Responsibility

Lesson Plan

Week Subject Related Preparation
1) Logic Functions, Gates and Metrics None
2) Review MOS Transistor Theory; NMOS Inverter with Resistor Load None
3) NMOS Interter with Saturated Load; NMOS Interter with Depletion Load None
4) NMOS Logic Gates None
5) CMOS Inverter None
6) CMOS Logic Gates-Clocked CMOS; Transmission Gates None
7) Sequential Logic Gates; Memories None
8) RAM Memory Cells; ROM Memory None
9) Digital to Analog Converters (DAC); Analog to Digital Converters (ADC) None
10) Diode Transistor Logic (DTL) Gates: Emitter Coupled Logic (ECL) None
11) Transistor Transistor Logic (TTL) Gates None
12) Schottky TTL and BiCMOS Digital Circuits; Schmitt Trigger Circuits None
13) Astable and Monostable Multivibrators; 555 Timer Circuit None
14) Voltage Regulators; Oscillators None

Sources

Course Notes / Textbooks: Analog Integrated Circuit Design, David A. Johns, Ken Martin, ISBN: 978-0-471-14448-9
References: Integrated Analog-to-Digital and Digital-to-Analog Converters, Rudy Van De Plassche, ISBN: 0-7923-9436-4
Understanding Delta-Sigma Data Converters, Richard Schreier, Gabor C. Temes, ISBN: 0-471-46585-2

Course-Program Learning Outcome Relationship

Learning Outcomes

1

2

3

4

5

Program Outcomes
1) By carrying out scientific research in their field, graduates evaluate and interpret deeply and broadly, their findings and apply their findings.
2) Graduates have extensive knowledge about current techniques and methods applied in engineering and their limitations.
3) Graduates can complet and implement knowledge using scientific methods using limited or incomplete data; can use the information of different disciplines together.
4) Graduates are aware of new and evolving practices of their profession, examinining new knowledge and learning as necessary
5) Graduates can define and formulate problems related to the field, develop methods to solve them and apply innovative methods in solutions.
6) Graduates develop new and/or original ideas and methods; design complex systems or processes and develop innovative / alternative solutions in their designs.
7) Graduates design and apply theoretical, experimental and model-based research; analyze and investigate the complex problems encountered in this process.
8) Lead in multidisciplinary teams, develop solution approaches in complex situations, work independently and take responsibility.
9) A foreign language communicates verbally and in writing using at least the European Language Portfolio B2 General Level.
10) Transfers the processes and outcomes of their work in a systematic and explicit manner, either written or verbally, in the national or international contexts of that area.
11) Recognize the social, environmental, health, safety, legal aspects of engineering applications, as well as project management and business life practices, and are aware of the limitations they place on engineering applications.
12) Consider social, scientific and ethical values in the collection, interpretation, announcement of data and in all professional activities.

Course - Learning Outcome Relationship

No Effect 1 Lowest 2 Low 3 Average 4 High 5 Highest
           
Program Outcomes Level of Contribution
1) By carrying out scientific research in their field, graduates evaluate and interpret deeply and broadly, their findings and apply their findings.
2) Graduates have extensive knowledge about current techniques and methods applied in engineering and their limitations.
3) Graduates can complet and implement knowledge using scientific methods using limited or incomplete data; can use the information of different disciplines together.
4) Graduates are aware of new and evolving practices of their profession, examinining new knowledge and learning as necessary
5) Graduates can define and formulate problems related to the field, develop methods to solve them and apply innovative methods in solutions.
6) Graduates develop new and/or original ideas and methods; design complex systems or processes and develop innovative / alternative solutions in their designs.
7) Graduates design and apply theoretical, experimental and model-based research; analyze and investigate the complex problems encountered in this process.
8) Lead in multidisciplinary teams, develop solution approaches in complex situations, work independently and take responsibility.
9) A foreign language communicates verbally and in writing using at least the European Language Portfolio B2 General Level.
10) Transfers the processes and outcomes of their work in a systematic and explicit manner, either written or verbally, in the national or international contexts of that area.
11) Recognize the social, environmental, health, safety, legal aspects of engineering applications, as well as project management and business life practices, and are aware of the limitations they place on engineering applications.
12) Consider social, scientific and ethical values in the collection, interpretation, announcement of data and in all professional activities.

Learning Activity and Teaching Methods

Lesson
Group study and homework
Reading
Homework

Assessment & Grading Methods and Criteria

Written Exam (Open-ended questions, multiple choice, true-false, matching, fill in the blanks, sequencing)
Homework

Assessment & Grading

Semester Requirements Number of Activities Level of Contribution
Homework Assignments 3 % 10
Midterms 1 % 40
Final 1 % 50
total % 100
PERCENTAGE OF SEMESTER WORK % 50
PERCENTAGE OF FINAL WORK % 50
total % 100

Workload and ECTS Credit Grading

Activities Number of Activities Duration (Hours) Workload
Course Hours 14 3 42
Project 1 24 24
Homework Assignments 2 16 32
Midterms 1 16 16
Final 1 24 24
Total Workload 138