Automotive Engineering (English) | |||||
Bachelor | TR-NQF-HE: Level 6 | QF-EHEA: First Cycle | EQF-LLL: Level 6 |
Course Code: | ME213 | ||||||||
Course Name: | Engineering Materials | ||||||||
Course Semester: | Fall | ||||||||
Course Credits: |
|
||||||||
Language of instruction: | EN | ||||||||
Course Requisites: | |||||||||
Does the Course Require Work Experience?: | No | ||||||||
Type of course: | Compulsory | ||||||||
Course Level: |
|
||||||||
Mode of Delivery: | Face to face | ||||||||
Course Coordinator : | Dr.Öğr.Üyesi ELİF ALTÜRK | ||||||||
Course Lecturer(s): |
|
||||||||
Course Assistants: |
Course Objectives: | Dersin Hedefi Öğrencilerin Temel Malzeme gruplarını ve özeliklerini anlayabilmeleri. Faz diyagramlarına yorum yapabilmesi, Termal proseslerin ve difüzyonun etkilerini analiz edebilmelerinin sağlanmasıdır. |
Course Content: | Introduction to Materials Science and Engineering Atomic Structure and Bonding Crystal and Amorphous Structure in Materials thermally Activated Processes and Diffusion in Solids Mechanical Properties of Metals Phase Diagrams Engineering Alloys Polymers, Ceramics, Composites Properties of Material Types |
The students who have succeeded in this course;
|
Week | Subject | Related Preparation |
1) | İntroduction | - |
2) | Types of materials | - |
3) | Lattice types | - |
4) | Inperfection of solids | - |
5) | Diffusion | - |
6) | Mechanical properties | - |
7) | Phase diagrams | - |
8) | Fe-C balance diagram | - |
9) | Ara sınav | - |
10) | isothermal and continuous cooling diagrams | - |
11) | production of steels and types of steels | - |
12) | Cast irons | - |
13) | Nonferrous alloys | - |
14) | An overview | - |
15) | Final | - |
Course Notes / Textbooks: | Specific handbooks |
References: | Askeland, D., "The Science and Engineering of Materials", Cengage, 2016. Callister, WD.,"Materials Science and Engineering: An Introduction", Wiley, 2010. Yüksel, M., Meran, C., Malzeme Bilgisine Giriş, Malzeme Bilimleri Serisi -Cilt 2, MMO Yayını, Yayın No: MMO/545, Ekim 2010, Ankara Smith,W.Çeviren:Kınıkoğlu,N. ‘’Malzeme Bilimi ve Mühendisliği’’,2001. Can, A.Ç., Tasarımcı Mühendisler İçin Malzeme Bilgisi, Birsen Yayınevi, 2010, İstanbul. Hohn.V.,Çevirenler:Topuz,A.,Marşoğlu,M.,Küçükkaragöz,S.,Çiğdem,M.,’’Mühendislik Malzemeleri’’,2001. |
Learning Outcomes | 1 |
2 |
|||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Program Outcomes | |||||||||||
1) Sufficient knowledge in mathematics, science and engineering related to their branches; and the ability to apply theoretical and practical knowledge in these areas to model and solve engineering problems. | |||||||||||
2) The ability to identify, formulate, and solve complex engineering problems; selecting and applying appropriate analysis and modeling methods for this purpose. | |||||||||||
3) The ability to design a complex system, process, device or product under realistic constraints and conditions to meet specific requirements; the ability to apply modern design methods for this purpose. (Realistic constraints and conditions include such issues as economy, environmental issues, sustainability, manufacturability, ethics, health, safety, social and political issues, according to the nature of design.) | |||||||||||
4) Ability to develop, select and use modern techniques and tools necessary for engineering applications; ability to use information technologies effectively. | |||||||||||
5) Ability to design experiments, conduct experiments, collect data, analyze and interpret results to examine engineering problems or discipline-specific research topics. | |||||||||||
6) The ability to work effectively in disciplinary and multidisciplinary teams; individual work skill. | |||||||||||
7) Effective communication skills in Turkish oral and written communication; at least one foreign language knowledge; ability to write effective reports and understand written reports, to prepare design and production reports, to make effective presentations, to give and receive clear and understandable instructions. | |||||||||||
8) Awareness of the need for lifelong learning; access to knowledge, ability to follow developments in science and technology, and constant self-renewal. | |||||||||||
9) Conform to ethical principles, and standards of professional and ethical responsibility; be informed about the standards used in engineering applications. | |||||||||||
10) Awareness of applications in business, such as project management, risk management and change management; awareness of entrepreneurship, and innovation; information about sustainable development. | |||||||||||
11) Information about the universal and social health, environmental and safety effects of engineering applications and the ways in which contemporary problems are reflected in the engineering field; awareness of the legal consequences of engineering solutions. | |||||||||||
12) Knowledge on advanced calculus, including differential equations applicable to automotive engineering; familiarity with statistics and linear algebra; knowledge on chemistry, calculus-based physics, dynamics, structural mechanics, structure and properties of materials, fluid dynamics, heat transfer, manufacturing processes, electronics and control, design of vehicle elements, vehicle dynamics, vehicle power train systems, automotive related regulations and vehicle validation/verification tests; ability to integrate and apply this knowledge to solve multidisciplinary automotive problems; ability to apply theoretical, experimental and simulation methods and, computer aided design techniques in the field of automotive engineering; ability to work in the field of vehicle design and manufacturing. |
No Effect | 1 Lowest | 2 Low | 3 Average | 4 High | 5 Highest |
Program Outcomes | Level of Contribution | |
1) | Sufficient knowledge in mathematics, science and engineering related to their branches; and the ability to apply theoretical and practical knowledge in these areas to model and solve engineering problems. | |
2) | The ability to identify, formulate, and solve complex engineering problems; selecting and applying appropriate analysis and modeling methods for this purpose. | |
3) | The ability to design a complex system, process, device or product under realistic constraints and conditions to meet specific requirements; the ability to apply modern design methods for this purpose. (Realistic constraints and conditions include such issues as economy, environmental issues, sustainability, manufacturability, ethics, health, safety, social and political issues, according to the nature of design.) | |
4) | Ability to develop, select and use modern techniques and tools necessary for engineering applications; ability to use information technologies effectively. | |
5) | Ability to design experiments, conduct experiments, collect data, analyze and interpret results to examine engineering problems or discipline-specific research topics. | |
6) | The ability to work effectively in disciplinary and multidisciplinary teams; individual work skill. | |
7) | Effective communication skills in Turkish oral and written communication; at least one foreign language knowledge; ability to write effective reports and understand written reports, to prepare design and production reports, to make effective presentations, to give and receive clear and understandable instructions. | |
8) | Awareness of the need for lifelong learning; access to knowledge, ability to follow developments in science and technology, and constant self-renewal. | |
9) | Conform to ethical principles, and standards of professional and ethical responsibility; be informed about the standards used in engineering applications. | |
10) | Awareness of applications in business, such as project management, risk management and change management; awareness of entrepreneurship, and innovation; information about sustainable development. | |
11) | Information about the universal and social health, environmental and safety effects of engineering applications and the ways in which contemporary problems are reflected in the engineering field; awareness of the legal consequences of engineering solutions. | |
12) | Knowledge on advanced calculus, including differential equations applicable to automotive engineering; familiarity with statistics and linear algebra; knowledge on chemistry, calculus-based physics, dynamics, structural mechanics, structure and properties of materials, fluid dynamics, heat transfer, manufacturing processes, electronics and control, design of vehicle elements, vehicle dynamics, vehicle power train systems, automotive related regulations and vehicle validation/verification tests; ability to integrate and apply this knowledge to solve multidisciplinary automotive problems; ability to apply theoretical, experimental and simulation methods and, computer aided design techniques in the field of automotive engineering; ability to work in the field of vehicle design and manufacturing. |
Expression | |
Brainstorming/ Six tihnking hats | |
Individual study and homework | |
Lesson | |
Lab | |
Reading | |
Homework | |
Problem Solving | |
Report Writing | |
Application (Modelling, Design, Model, Simulation, Experiment etc.) |
Written Exam (Open-ended questions, multiple choice, true-false, matching, fill in the blanks, sequencing) |
Semester Requirements | Number of Activities | Level of Contribution |
Laboratory | 1 | % 10 |
Quizzes | 1 | % 10 |
Homework Assignments | 1 | % 15 |
Presentation | 1 | % 15 |
Midterms | 1 | % 20 |
Final | 1 | % 30 |
total | % 100 | |
PERCENTAGE OF SEMESTER WORK | % 70 | |
PERCENTAGE OF FINAL WORK | % 30 | |
total | % 100 |
Activities | Number of Activities | Duration (Hours) | Workload |
Course Hours | 14 | 4 | 56 |
Midterms | 1 | 70 | 70 |
Final | 1 | 70 | 70 |
Total Workload | 196 |