Civil Engineering (English) | |||||
Bachelor | TR-NQF-HE: Level 6 | QF-EHEA: First Cycle | EQF-LLL: Level 6 |
Course Code: | CE433 | ||||||||
Course Name: | Concrete Technology | ||||||||
Course Semester: |
Fall |
||||||||
Course Credits: |
|
||||||||
Language of instruction: | EN | ||||||||
Course Requisites: | |||||||||
Does the Course Require Work Experience?: | No | ||||||||
Type of course: | Department Elective | ||||||||
Course Level: |
|
||||||||
Mode of Delivery: | Face to face | ||||||||
Course Coordinator : | Dr.Öğr.Üyesi AHSANOLLAH BEGLARIGALE | ||||||||
Course Lecturer(s): |
Dr.Öğr.Üyesi AHSANOLLAH BEGLARIGALE Dr. ALİ RAİF SAĞLAM |
||||||||
Course Assistants: |
Course Objectives: | The physical and mechanical properties of concrete which is the most commonly used construction material in the world will be focused within the scope of Materials of Construction-II course. Initially, students will gain the basic knowledge about the ingredients of concrete and mixture proportioning methods. At the second stage of this course basic information on quality control and durability properties of concrete will be presented. |
Course Content: | CHAPTER 1 : Introduction to Concrete Concrete Definition and Historical Development Concrete as a Structural Material Characteristics of Concrete Types of Concrete Factors Influencing Concrete Properties CHAPTERS 2 – 3 – 4 : Materials for Making Concrete Aggregates Cementitious Binders Puzolanic Admixtures Water CHAPTER 5 : Fresh Concrete Workability of Fresh Concrete Mix Design Procedures for Concrete Mix Design Manufacture of Concrete Delivery of Concrete Concrete Placing Early-Age Properties of Concrete CHAPTER 6 : Properties of Hardened Concrete Strengths of Hardened Concrete Stress–Strain Relationship and Constitutive Equations Dimensional Stability—Shrinkage and Creep Durability CHAPTER 7 : Structure of Hardened Concrete Structure of Concrete in Nanometer Scale: C–S–H Structure Transition Zone in Concrete Microstructural Engineering CHAPTER 8 : Mix Design of Concrete Procedure for concrete mix design An example |
The students who have succeeded in this course;
|
Week | Subject | Related Preparation |
1) | The schedule will be announced when the course starts. |
Course Notes / Textbooks: | Zongjin Li, Advanced Concrete Technology, Wiley. |
References: | Zongjin Li, Advanced Concrete Technology, Wiley. |
Learning Outcomes | 1 |
2 |
3 |
4 |
5 |
|||||
---|---|---|---|---|---|---|---|---|---|---|
Program Outcomes | ||||||||||
1) Adequate knowledge in mathematics, science and engineering subjects pertaining to the relevant discipline; ability to use theoretical and applied information in these areas to model and solve engineering problems. | ||||||||||
2) Ability to identify, formulate, and solve complex engineering problems; ability to select and apply proper analysis and modelling methods for this purpose. | ||||||||||
3) Ability to design a complex system, process, device or product under realistic constraints and conditions, in such a way so as to meet the desired result; ability to apply modern design methods for this purpose. (Realistic constraints and conditions may include factors such as economic and environmental issues, sustainability, manufacturability, ethics, health, safety issues, and social and political issues according to the nature of the design.) | ||||||||||
4) Ability to select and use modern techniques and tools needed for analyzing and solving complex problems encountered in engineering practice; ability to employ information technologies effectively. | ||||||||||
5) Ability to design and conduct experiments, gather data, analyze and interpret results for investigating complex engineering problems or discipline specific research questions. | ||||||||||
6) Ability to work efficiently in intra-disciplinary and multi-disciplinary teams; ability to work individually. | ||||||||||
7) Ability to communicate effectively, both orally and in writing; knowledge of a minimum of one foreign language; ability to write effective reports and comprehend written reports, prepare design and production reports, make effective presentations, and give and receive clear and intelligible instructions. | ||||||||||
8) Recognition of the need for lifelong learning; ability to access information, to follow developments in science and technology, and to continue to educate him/herself. | ||||||||||
9) Knowledge on behavior according ethical principles, professional and ethical responsibility and standards used in engineering practices. | ||||||||||
10) Knowledge about business life practices such as project management, risk management, and change management; awareness in entrepreneurship, innovation; knowledge about sustainable development. | ||||||||||
11) Knowledge about contemporary issues and the global and societal effects of engineering practices on health, environment, and safety; awareness of the legal consequences of engineering solutions. |
No Effect | 1 Lowest | 2 Low | 3 Average | 4 High | 5 Highest |
Program Outcomes | Level of Contribution | |
1) | Adequate knowledge in mathematics, science and engineering subjects pertaining to the relevant discipline; ability to use theoretical and applied information in these areas to model and solve engineering problems. | |
2) | Ability to identify, formulate, and solve complex engineering problems; ability to select and apply proper analysis and modelling methods for this purpose. | |
3) | Ability to design a complex system, process, device or product under realistic constraints and conditions, in such a way so as to meet the desired result; ability to apply modern design methods for this purpose. (Realistic constraints and conditions may include factors such as economic and environmental issues, sustainability, manufacturability, ethics, health, safety issues, and social and political issues according to the nature of the design.) | |
4) | Ability to select and use modern techniques and tools needed for analyzing and solving complex problems encountered in engineering practice; ability to employ information technologies effectively. | |
5) | Ability to design and conduct experiments, gather data, analyze and interpret results for investigating complex engineering problems or discipline specific research questions. | |
6) | Ability to work efficiently in intra-disciplinary and multi-disciplinary teams; ability to work individually. | |
7) | Ability to communicate effectively, both orally and in writing; knowledge of a minimum of one foreign language; ability to write effective reports and comprehend written reports, prepare design and production reports, make effective presentations, and give and receive clear and intelligible instructions. | |
8) | Recognition of the need for lifelong learning; ability to access information, to follow developments in science and technology, and to continue to educate him/herself. | |
9) | Knowledge on behavior according ethical principles, professional and ethical responsibility and standards used in engineering practices. | |
10) | Knowledge about business life practices such as project management, risk management, and change management; awareness in entrepreneurship, innovation; knowledge about sustainable development. | |
11) | Knowledge about contemporary issues and the global and societal effects of engineering practices on health, environment, and safety; awareness of the legal consequences of engineering solutions. |
Expression | |
Individual study and homework | |
Lesson | |
Lab | |
Homework | |
Report Writing | |
Q&A / Discussion |
Written Exam (Open-ended questions, multiple choice, true-false, matching, fill in the blanks, sequencing) | |
Homework | |
Application | |
Presentation | |
Reporting |
Semester Requirements | Number of Activities | Level of Contribution |
Homework Assignments | 1 | % 10 |
Midterms | 1 | % 40 |
Final | 1 | % 50 |
total | % 100 | |
PERCENTAGE OF SEMESTER WORK | % 50 | |
PERCENTAGE OF FINAL WORK | % 50 | |
total | % 100 |
Activities | Number of Activities | Duration (Hours) | Workload |
Course Hours | 14 | 3 | 42 |
Study Hours Out of Class | 14 | 6 | 84 |
Presentations / Seminar | 1 | 3 | 3 |
Midterms | 1 | 3 | 3 |
Final | 1 | 3 | 3 |
Total Workload | 135 |