MCHT623 Mechatronic Systems DesignIstanbul Okan UniversityDegree Programs Automotive Mechatronics and Intelligent Vehicles (with thesis)General Information For StudentsDiploma SupplementErasmus Policy StatementNational Qualifications
Automotive Mechatronics and Intelligent Vehicles (with thesis)
Master TR-NQF-HE: Level 7 QF-EHEA: Second Cycle EQF-LLL: Level 7

General course introduction information

Course Code: MCHT623
Course Name: Mechatronic Systems Design
Course Semester: Fall
Spring
Course Credits:
Theoretical Practical Credit ECTS
3 0 3 10
Language of instruction: EN
Course Requisites:
Does the Course Require Work Experience?: No
Type of course: Department Elective
Course Level:
Master TR-NQF-HE:7. Master`s Degree QF-EHEA:Second Cycle EQF-LLL:7. Master`s Degree
Mode of Delivery: Face to face
Course Coordinator : Assoc. Prof. ÖMER CİHAN KIVANÇ
Course Lecturer(s):
Course Assistants:

Course Objective and Content

Course Objectives: The multidisciplinary field of mechatronics brings together mechanical engineering, electrical and electronic engineering, control engineering, and computer science in a synergistic manner.This lecture brings all of those disciplines together with the intent of advancing technical knowledge in the theory, design, development, and application in the field of mechatronics. With this background work behind of system design, student can have a different aspect to view and analyse different technologies with mechatronics knowledge.
Course Content: We will start with improving basic understanding of technology needs for mechatronic systems. Lecture continues with mechatronic devices, communication technologies, control technologies, mechatronic system design&development and monitoring&diagnosis.

Learning Outcomes

The students who have succeeded in this course;
Learning Outcomes
1 - Knowledge
Theoretical - Conceptual
2 - Skills
Cognitive - Practical
1) Top-down approach to a mechtronic system developlment process
3 - Competences
Communication and Social Competence
Learning Competence
Field Specific Competence
1) Understanding of Mechatronics system engineering and the world modern systems
2) Define and analyse structure of complex systems
3) Understanding control technologies with mechatronic systems
Competence to Work Independently and Take Responsibility

Lesson Plan

Week Subject Related Preparation
1) Introduction to mechatronics system engineering Course Notes
2) System engineering landscape Course Notes
3) System building with blocks and interfaces Course Notes
4) Mechatonics systems through the system life cycle Course Notes
5) Originating a new system Course Notes
6) Robotics applications of mechatronics Course Notes
7) MEMS based sensors Course Notes
8) Communication Using Visible Light Course Notes
9) Brain–Machine Interfacing and Motor Prosthetics Course Notes
10) Robotic Tasks Using Discrete Event Controller Course Notes
11) Applicaiton Course Notes
12) Application Course Notes
13) Application Course Notes
14) Application Course Notes

Sources

Course Notes / Textbooks: Clarence W. de Silva, "Mechatronic Systems Devices, Design, Control, Operation and Monitoring", CRC Press Taylor & Francis
Alexander_Kossiakoff,_William_N._Sweet "SYSTEMS ENGINEERING PRINCIPLES AND PRACTICE", WILEY
References: Clarence W. de Silva, "Mechatronic Systems Devices, Design, Control, Operation and Monitoring", CRC Press Taylor & Francis
Alexander_Kossiakoff,_William_N._Sweet "SYSTEMS ENGINEERING PRINCIPLES AND PRACTICE", WILEY

Course-Program Learning Outcome Relationship

Learning Outcomes

1

2

4

3

Program Outcomes
1) Sufficient knowledge in mathematics, science and engineering related to their branches; and the ability to apply theoretical and practical knowledge in these areas to model and solve engineering problems.
2) The ability to identify, formulate, and solve complex engineering problems; selecting and applying appropriate analysis and modeling methods for this purpose.
3) The ability to design a complex system, process, device or product under realistic constraints and conditions to meet specific requirements; the ability to apply modern design methods for this purpose. (Realistic constraints and conditions include such issues as economy, environmental issues, sustainability, manufacturability, ethics, health, safety, social and political issues, according to the nature of design.)
4) Ability to develop, select and use modern techniques and tools necessary for engineering applications; ability to use information technologies effectively.
5) Ability to design experiments, conduct experiments, collect data, analyze and interpret results to examine engineering problems or discipline-specific research topics.
6) The ability to work effectively in disciplinary and multidisciplinary teams; individual work skill.
7) Effective communication skills in Turkish oral and written communication; at least one foreign language knowledge; ability to write effective reports and understand written reports, to prepare design and production reports, to make effective presentations, to give and receive clear and understandable instructions.
8) Awareness of the need for lifelong learning; access to knowledge, ability to follow developments in science and technology, and constant self-renewal.
9) Conform to ethical principles, and standards of professional and ethical responsibility; be informed about the standards used in engineering applications.
10) Awareness of applications in business, such as project management, risk management and change management; awareness of entrepreneurship, and innovation; information about sustainable development.
11) Information about the universal and social health, environmental and safety effects of engineering applications and the ways in which contemporary problems are reflected in the engineering field; awareness of the legal consequences of engineering solutions.
12) Knowledge on advanced calculus, including differential equations applicable to automotive engineering; familiarity with statistics and linear algebra; knowledge on chemistry, calculus-based physics, dynamics, structural mechanics, structure and properties of materials, fluid dynamics, heat transfer, manufacturing processes, electronics and control, design of vehicle elements, vehicle dynamics, vehicle power train systems, automotive related regulations and vehicle validation/verification tests; ability to integrate and apply this knowledge to solve multidisciplinary automotive problems; ability to apply theoretical, experimental and simulation methods and, computer aided design techniques in the field of automotive engineering; ability to work in the field of vehicle design and manufacturing.

Course - Learning Outcome Relationship

No Effect 1 Lowest 2 Low 3 Average 4 High 5 Highest
           
Program Outcomes Level of Contribution
1) Sufficient knowledge in mathematics, science and engineering related to their branches; and the ability to apply theoretical and practical knowledge in these areas to model and solve engineering problems.
2) The ability to identify, formulate, and solve complex engineering problems; selecting and applying appropriate analysis and modeling methods for this purpose.
3) The ability to design a complex system, process, device or product under realistic constraints and conditions to meet specific requirements; the ability to apply modern design methods for this purpose. (Realistic constraints and conditions include such issues as economy, environmental issues, sustainability, manufacturability, ethics, health, safety, social and political issues, according to the nature of design.)
4) Ability to develop, select and use modern techniques and tools necessary for engineering applications; ability to use information technologies effectively.
5) Ability to design experiments, conduct experiments, collect data, analyze and interpret results to examine engineering problems or discipline-specific research topics.
6) The ability to work effectively in disciplinary and multidisciplinary teams; individual work skill.
7) Effective communication skills in Turkish oral and written communication; at least one foreign language knowledge; ability to write effective reports and understand written reports, to prepare design and production reports, to make effective presentations, to give and receive clear and understandable instructions.
8) Awareness of the need for lifelong learning; access to knowledge, ability to follow developments in science and technology, and constant self-renewal.
9) Conform to ethical principles, and standards of professional and ethical responsibility; be informed about the standards used in engineering applications.
10) Awareness of applications in business, such as project management, risk management and change management; awareness of entrepreneurship, and innovation; information about sustainable development.
11) Information about the universal and social health, environmental and safety effects of engineering applications and the ways in which contemporary problems are reflected in the engineering field; awareness of the legal consequences of engineering solutions.
12) Knowledge on advanced calculus, including differential equations applicable to automotive engineering; familiarity with statistics and linear algebra; knowledge on chemistry, calculus-based physics, dynamics, structural mechanics, structure and properties of materials, fluid dynamics, heat transfer, manufacturing processes, electronics and control, design of vehicle elements, vehicle dynamics, vehicle power train systems, automotive related regulations and vehicle validation/verification tests; ability to integrate and apply this knowledge to solve multidisciplinary automotive problems; ability to apply theoretical, experimental and simulation methods and, computer aided design techniques in the field of automotive engineering; ability to work in the field of vehicle design and manufacturing.

Learning Activity and Teaching Methods

Lesson
Project preparation

Assessment & Grading Methods and Criteria

Written Exam (Open-ended questions, multiple choice, true-false, matching, fill in the blanks, sequencing)
Individual Project

Assessment & Grading

Semester Requirements Number of Activities Level of Contribution
Project 1 % 50
Final 1 % 50
total % 100
PERCENTAGE OF SEMESTER WORK % 50
PERCENTAGE OF FINAL WORK % 50
total % 100

Workload and ECTS Credit Grading

Activities Number of Activities Duration (Hours) Workload
Course Hours 42 3 126
Project 1 60 60
Midterms 1 60 60
Final 1 60 60
Total Workload 306