Industrial Engineering (English) | |||||
Bachelor | TR-NQF-HE: Level 6 | QF-EHEA: First Cycle | EQF-LLL: Level 6 |
Course Code: | ENG301 | ||||||||
Course Name: | Management for Engineers | ||||||||
Course Semester: | Fall | ||||||||
Course Credits: |
|
||||||||
Language of instruction: | EN | ||||||||
Course Requisites: | |||||||||
Does the Course Require Work Experience?: | No | ||||||||
Type of course: | Compulsory | ||||||||
Course Level: |
|
||||||||
Mode of Delivery: | |||||||||
Course Coordinator : | Dr.Öğr.Üyesi MEHMET TEVFİK ÇOBANOĞLU | ||||||||
Course Lecturer(s): |
|
||||||||
Course Assistants: |
Course Objectives: | The aim of the course is to explain the steps in the strategy definition that should be done within the framework of management. The content of the analysis, vision, mission, business model and key performance criteria definitions are explained. After these are completed, the organization, cost calculation, project management and quality issues are discussed in the implementation phase. |
Course Content: | SWOT;PEST(LE);5 forces;Ansoff Matrix;Space Matrix;Growth Share Matrix Strategy Definition CANVAS Business Model Goal Definition Organization Control and Cost |
The students who have succeeded in this course;
|
Week | Subject | Related Preparation |
Course Notes / Textbooks: | |
References: | Engineering Management A Complete Guide - 2020 Edition Von Gerardus Blokdyk |
Learning Outcomes | 1 |
|||||||||
---|---|---|---|---|---|---|---|---|---|---|
Program Outcomes | ||||||||||
1) Adequate knowledge in mathematics, science and engineering subjects pertaining to the relevant discipline; ability to use theoretical and applied information in these areas to model and solve engineering problems. | ||||||||||
2) Ability to identify, formulate, and solve complex engineering problems; ability to select and apply proper analysis and modelling methods for this purpose. | ||||||||||
3) Ability to design a complex system, process, device or product under realistic constraints and conditions, in such a way so as to meet the desired result; ability to apply modern design methods for this purpose. (Realistic constraints and conditions may include factors such as economic and environmental issues, sustainability, manufacturability, ethics, health, safety issues, and social and political issues according to the nature of the design.) | ||||||||||
4) Ability to devise, select, and use modern techniques and tools needed for engineering practice; ability to employ information technologies effectively. | ||||||||||
5) Ability to design and conduct experiments, gather data, analyse and interpret results for investigating engineering problems. | ||||||||||
6) Ability to work efficiently in intra-disciplinary and multi-disciplinary teams; ability to work individually. | ||||||||||
7) Ability to communicate effectively i Turkish, both orally and in writing; knowledge of a minimum of one foreign language. | ||||||||||
8) Recognition of the need for lifelong learning; ability to access information, to follow developments in science and technology, and to continue to educate him/herself. | ||||||||||
9) Awareness of professional and ethical responsibility. | ||||||||||
10) Information about business life practices such as project management, risk management, and change management; awareness of entrepreneurship, innovation, and sustainable development. | ||||||||||
11) Knowledge about contemporary issues and the global and societal effects of engineering practices on health, environment, and safety; awareness of the legal consequences of engineering solutions. |
No Effect | 1 Lowest | 2 Low | 3 Average | 4 High | 5 Highest |
Program Outcomes | Level of Contribution | |
1) | Adequate knowledge in mathematics, science and engineering subjects pertaining to the relevant discipline; ability to use theoretical and applied information in these areas to model and solve engineering problems. | |
2) | Ability to identify, formulate, and solve complex engineering problems; ability to select and apply proper analysis and modelling methods for this purpose. | |
3) | Ability to design a complex system, process, device or product under realistic constraints and conditions, in such a way so as to meet the desired result; ability to apply modern design methods for this purpose. (Realistic constraints and conditions may include factors such as economic and environmental issues, sustainability, manufacturability, ethics, health, safety issues, and social and political issues according to the nature of the design.) | |
4) | Ability to devise, select, and use modern techniques and tools needed for engineering practice; ability to employ information technologies effectively. | |
5) | Ability to design and conduct experiments, gather data, analyse and interpret results for investigating engineering problems. | |
6) | Ability to work efficiently in intra-disciplinary and multi-disciplinary teams; ability to work individually. | |
7) | Ability to communicate effectively i Turkish, both orally and in writing; knowledge of a minimum of one foreign language. | |
8) | Recognition of the need for lifelong learning; ability to access information, to follow developments in science and technology, and to continue to educate him/herself. | |
9) | Awareness of professional and ethical responsibility. | |
10) | Information about business life practices such as project management, risk management, and change management; awareness of entrepreneurship, innovation, and sustainable development. | |
11) | Knowledge about contemporary issues and the global and societal effects of engineering practices on health, environment, and safety; awareness of the legal consequences of engineering solutions. |
Lesson | |
Problem Solving |
Semester Requirements | Number of Activities | Level of Contribution |
total | % | |
PERCENTAGE OF SEMESTER WORK | % 0 | |
PERCENTAGE OF FINAL WORK | % | |
total | % |