Civil Engineering (English) | |||||
Bachelor | TR-NQF-HE: Level 6 | QF-EHEA: First Cycle | EQF-LLL: Level 6 |
Course Code: | ENG318 | ||||||||
Course Name: | Introduction to Environmental Engineering | ||||||||
Course Semester: | Spring | ||||||||
Course Credits: |
|
||||||||
Language of instruction: | EN | ||||||||
Course Requisites: | |||||||||
Does the Course Require Work Experience?: | No | ||||||||
Type of course: | Faculty Elective | ||||||||
Course Level: |
|
||||||||
Mode of Delivery: | Face to face | ||||||||
Course Coordinator : | Dr.Öğr.Üyesi AGNE KARLIKANOVAITE- BA | ||||||||
Course Lecturer(s): |
Dr.Öğr.Üyesi AGNE KARLIKANOVAITE- BA Assoc. Prof. SELİM DÜNDAR |
||||||||
Course Assistants: |
Course Objectives: | The purpose of this introductory course is to provide the students the fundamental principles of environmental engineering and it’s applications. |
Course Content: | The origins of environmental engineering. Environmental engineering today and on the horizon. Sustainability. Engineering decisions. Engineering calculations and units. Energy flow and balances. Ecosystems. Water quality. Water supply and treatment. Wastewater treatment. Air quality. Air quality control. Solid waste. Hazardous waste. Noise pollution. Ethics of green engineering. Case studies and discussion questions. |
The students who have succeeded in this course;
|
Week | Subject | Related Preparation |
1) | Later | Later |
1) | Introduction to course. General information and requirements | |
2) | Origin and Current Scope of Environmental Engineering | |
3) | Environmental Impact and Risk Analysis, Engineering Calculations (Dimensions and Units) | |
4) | Ecosystems | |
5) | National Holidays | |
6) | Water quality | |
7) | Water Supply&Treatment | |
8) | Wastewater treatment | |
9) | Midterm | |
10) | Air quality | |
11) | Air quality control | |
12) | Katı atıklar | |
13) | Hazardous waste | |
14) | Green engineering and ethics |
Course Notes / Textbooks: | P. Aarne Vesilind,Susan M. Morgan and Lauren G. Heine. Introduction to Environmental Engineering, 3th edition,2004. |
References: | Later |
Learning Outcomes | 1 |
1 |
||||||||
---|---|---|---|---|---|---|---|---|---|---|
Program Outcomes | ||||||||||
1) Adequate knowledge in mathematics, science and engineering subjects pertaining to the relevant discipline; ability to use theoretical and applied information in these areas to model and solve engineering problems. | ||||||||||
2) Ability to identify, formulate, and solve complex engineering problems; ability to select and apply proper analysis and modelling methods for this purpose. | ||||||||||
3) Ability to design a complex system, process, device or product under realistic constraints and conditions, in such a way so as to meet the desired result; ability to apply modern design methods for this purpose. (Realistic constraints and conditions may include factors such as economic and environmental issues, sustainability, manufacturability, ethics, health, safety issues, and social and political issues according to the nature of the design.) | ||||||||||
4) Ability to select and use modern techniques and tools needed for analyzing and solving complex problems encountered in engineering practice; ability to employ information technologies effectively. | ||||||||||
5) Ability to design and conduct experiments, gather data, analyze and interpret results for investigating complex engineering problems or discipline specific research questions. | ||||||||||
6) Ability to work efficiently in intra-disciplinary and multi-disciplinary teams; ability to work individually. | ||||||||||
7) Ability to communicate effectively, both orally and in writing; knowledge of a minimum of one foreign language; ability to write effective reports and comprehend written reports, prepare design and production reports, make effective presentations, and give and receive clear and intelligible instructions. | ||||||||||
8) Recognition of the need for lifelong learning; ability to access information, to follow developments in science and technology, and to continue to educate him/herself. | ||||||||||
9) Knowledge on behavior according ethical principles, professional and ethical responsibility and standards used in engineering practices. | ||||||||||
10) Knowledge about business life practices such as project management, risk management, and change management; awareness in entrepreneurship, innovation; knowledge about sustainable development. | ||||||||||
11) Knowledge about contemporary issues and the global and societal effects of engineering practices on health, environment, and safety; awareness of the legal consequences of engineering solutions. |
No Effect | 1 Lowest | 2 Low | 3 Average | 4 High | 5 Highest |
Program Outcomes | Level of Contribution | |
1) | Adequate knowledge in mathematics, science and engineering subjects pertaining to the relevant discipline; ability to use theoretical and applied information in these areas to model and solve engineering problems. | |
2) | Ability to identify, formulate, and solve complex engineering problems; ability to select and apply proper analysis and modelling methods for this purpose. | |
3) | Ability to design a complex system, process, device or product under realistic constraints and conditions, in such a way so as to meet the desired result; ability to apply modern design methods for this purpose. (Realistic constraints and conditions may include factors such as economic and environmental issues, sustainability, manufacturability, ethics, health, safety issues, and social and political issues according to the nature of the design.) | |
4) | Ability to select and use modern techniques and tools needed for analyzing and solving complex problems encountered in engineering practice; ability to employ information technologies effectively. | |
5) | Ability to design and conduct experiments, gather data, analyze and interpret results for investigating complex engineering problems or discipline specific research questions. | |
6) | Ability to work efficiently in intra-disciplinary and multi-disciplinary teams; ability to work individually. | |
7) | Ability to communicate effectively, both orally and in writing; knowledge of a minimum of one foreign language; ability to write effective reports and comprehend written reports, prepare design and production reports, make effective presentations, and give and receive clear and intelligible instructions. | |
8) | Recognition of the need for lifelong learning; ability to access information, to follow developments in science and technology, and to continue to educate him/herself. | |
9) | Knowledge on behavior according ethical principles, professional and ethical responsibility and standards used in engineering practices. | |
10) | Knowledge about business life practices such as project management, risk management, and change management; awareness in entrepreneurship, innovation; knowledge about sustainable development. | |
11) | Knowledge about contemporary issues and the global and societal effects of engineering practices on health, environment, and safety; awareness of the legal consequences of engineering solutions. |
Expression | |
Lesson | |
Homework |
Written Exam (Open-ended questions, multiple choice, true-false, matching, fill in the blanks, sequencing) | |
Presentation |
Semester Requirements | Number of Activities | Level of Contribution |
Midterms | 1 | % 45 |
Final | 1 | % 55 |
total | % 100 | |
PERCENTAGE OF SEMESTER WORK | % 45 | |
PERCENTAGE OF FINAL WORK | % 55 | |
total | % 100 |
Activities | Number of Activities | Duration (Hours) | Workload |
Course Hours | 14 | 3 | 42 |
Study Hours Out of Class | 14 | 5 | 70 |
Presentations / Seminar | 1 | 4 | 4 |
Homework Assignments | 4 | 4 | 16 |
Midterms | 1 | 2 | 2 |
Final | 1 | 2 | 2 |
Total Workload | 136 |