ECE532 Next Generation Mobile NetworksIstanbul Okan UniversityDegree Programs PhD in Mechatronic Engineering (English) with a master's degreeGeneral Information For StudentsDiploma SupplementErasmus Policy StatementNational Qualifications
PhD in Mechatronic Engineering (English) with a master's degree
PhD TR-NQF-HE: Level 8 QF-EHEA: Third Cycle EQF-LLL: Level 8

General course introduction information

Course Code: ECE532
Course Name: Next Generation Mobile Networks
Course Semester: Fall
Spring
Course Credits:
Theoretical Practical Credit ECTS
3 0 3 10
Language of instruction: EN
Course Requisites:
Does the Course Require Work Experience?: No
Type of course: Department Elective
Course Level:
PhD TR-NQF-HE:8. Master`s Degree QF-EHEA:Third Cycle EQF-LLL:8. Master`s Degree
Mode of Delivery: Face to face
Course Coordinator : Dr.Öğr.Üyesi DİDEM KIVANÇ TÜRELİ
Course Lecturer(s): Dr.Öğr.Üyesi DİDEM KIVANÇ TÜRELİ
Course Assistants:

Course Objective and Content

Course Objectives: The main objective of this course is to provide concepts and principles of wireless
networking including protocol stacks and standards with the evolution of latest wireless networks.
Course Content: This course familiarizes students with different concepts of wireless networking including wireless channels, communication techniques, cellular communications, mobile network, and advanced features.

Learning Outcomes

The students who have succeeded in this course;
Learning Outcomes
1 - Knowledge
Theoretical - Conceptual
2 - Skills
Cognitive - Practical
1) Identify the basic mechanisms of propagation of radio signals, explain and model the random processes which degrade this signal
2) Identify and analyze a simple queuing system.
3) Understand and describe the fundamental algorithms used for routing in wired and wireless networks.
4) Describe issues associated with mobility in wireless communication systems
5) Hücresel ağlardaki standardizasyon sürecini ve hücresel iletişimin tarihini anlar, mevcut ve eski iletişim sistemleri arasındaki bazı farklılıkları açıklayabilir.
3 - Competences
Communication and Social Competence
Learning Competence
Field Specific Competence
Competence to Work Independently and Take Responsibility

Lesson Plan

Week Subject Related Preparation
1) Introduction None
2) Wireless Channel Characterization None
3) Wireless Communication Techniques None
4) Fundamental of Cellular Communications None
5) Mobility Management in Wireless Networks None
6) Overview of Mobile Network and Transport Layer None
7) Advances in Wireless Networking None
8) Classical TCP improvements: Mobile TCP, Time out freezing, Selective retransmission None
9) Introduction to 5G and its vision None
10) Introduction to wireless network virtualization None
11) Concepts of Wireless Sensor Network & RFID None
12) Introduction to optical communication: Li-Fi None
13) Introduction to Software Defined Wireless Networks None
14) Concepts of Open BTS and Open Cellular Networks None

Sources

Course Notes / Textbooks: None
References: None

Course-Program Learning Outcome Relationship

Learning Outcomes

1

2

3

4

5

Program Outcomes
1) Knowledge and ability to apply the interdisciplinary synergetic approach of mechatronics to the solution of engineering problems
2) Ability to design mechatronic products and systems using the mechatronics approach
3) Knowledge and ability to analyze and develop existing products or processes with a mechatronics approach
4) Ability to communicate effectively and teamwork with other disciplines
5) Understanding of performing engineering in accordance with ethical principles
6) Understanding of using technology with awareness of local and global socioeconomic impacts
7) Approach to knowing and fulfilling the necessity of lifelong learning

Course - Learning Outcome Relationship

No Effect 1 Lowest 2 Low 3 Average 4 High 5 Highest
           
Program Outcomes Level of Contribution
1) Knowledge and ability to apply the interdisciplinary synergetic approach of mechatronics to the solution of engineering problems
2) Ability to design mechatronic products and systems using the mechatronics approach
3) Knowledge and ability to analyze and develop existing products or processes with a mechatronics approach
4) Ability to communicate effectively and teamwork with other disciplines
5) Understanding of performing engineering in accordance with ethical principles
6) Understanding of using technology with awareness of local and global socioeconomic impacts
7) Approach to knowing and fulfilling the necessity of lifelong learning

Learning Activity and Teaching Methods

Lesson
Homework
Project preparation

Assessment & Grading Methods and Criteria

Written Exam (Open-ended questions, multiple choice, true-false, matching, fill in the blanks, sequencing)
Homework
Individual Project

Assessment & Grading

Semester Requirements Number of Activities Level of Contribution
Attendance 42 % 0
Project 1 % 30
Midterms 1 % 30
Final 1 % 40
total % 100
PERCENTAGE OF SEMESTER WORK % 60
PERCENTAGE OF FINAL WORK % 40
total % 100

Workload and ECTS Credit Grading

Activities Number of Activities Duration (Hours) Workload
Course Hours 14 3 42
Project 1 24 24
Homework Assignments 2 16 32
Midterms 1 16 16
Final 1 24 24
Total Workload 138