SPOR301 Sports Seminar 5Istanbul Okan UniversityDegree Programs Civil Engineering (English)General Information For StudentsDiploma SupplementErasmus Policy StatementNational Qualifications
Civil Engineering (English)
Bachelor TR-NQF-HE: Level 6 QF-EHEA: First Cycle EQF-LLL: Level 6

General course introduction information

Course Code: SPOR301
Course Name: Sports Seminar 5
Course Semester: Spring
Course Credits:
Theoretical Practical Credit ECTS
2 0 2 4
Language of instruction: TR
Course Requisites:
Does the Course Require Work Experience?: No
Type of course: University Elective
Course Level:
Bachelor TR-NQF-HE:6. Master`s Degree QF-EHEA:First Cycle EQF-LLL:6. Master`s Degree
Mode of Delivery: Face to face
Course Coordinator : Dr.Öğr.Üyesi GÖKHAN ÇETİNKAYA
Course Lecturer(s): Öğr.Gör. SEMA TUĞÇE DİKİCİ
Course Assistants:

Course Objective and Content

Course Objectives: The aim of this course is to bring together successful and well-known people in the sports industry with students, and to transfer the experiences and knowledge of people in the industry to students.
Course Content: • Uses basic concepts of sports seminar.
• Defines the function, goals and philosophy of the sports seminar.

Learning Outcomes

The students who have succeeded in this course;
Learning Outcomes
1 - Knowledge
Theoretical - Conceptual
1) • Uses basic concepts of sports seminar. • Defines the function, goals and philosophy of the sports seminar.
2 - Skills
Cognitive - Practical
1) • Uses the development of the sports seminar and its relationship with other sciences.
3 - Competences
Competence to Work Independently and Take Responsibility
Field Specific Competence
Learning Competence
Communication and Social Competence

Lesson Plan

Week Subject Related Preparation
1) Meeting and course content --
2) The aim of the seminar course --
3) Participation in Recreation Fair --
4) Panel (Guest: About motorsport and navigation) --
5) Panel (Guest: About e-sports) --
6) Panel (Available applications) --
7) Panel (Guest: Sports Medicine) --
8) Panel (Guest: Sports economy) --
9) Midterm exam
10) Panel (Guest: Sports media) --
11) Panel (Guest: Sport psychology) --
12) Panel (Guest: Sports in the public) --
13) recreational trip --
14) Final examination --

Sources

Course Notes / Textbooks: • Pedersen P, Thibault L. (2014). Contemporary Sport Management. 5th. Edition, Human Kinetics, USA.
References: • Bernard J., M., Stephen H., W., Sutton A. (2014). Sport Marketing. 4th . Edition Human Kinetics, USA.

Course-Program Learning Outcome Relationship

Learning Outcomes

1

2

Program Outcomes
1) Adequate knowledge in mathematics, science and engineering subjects pertaining to the relevant discipline; ability to use theoretical and applied information in these areas to model and solve engineering problems.
2) Ability to identify, formulate, and solve complex engineering problems; ability to select and apply proper analysis and modelling methods for this purpose.
3) Ability to design a complex system, process, device or product under realistic constraints and conditions, in such a way so as to meet the desired result; ability to apply modern design methods for this purpose. (Realistic constraints and conditions may include factors such as economic and environmental issues, sustainability, manufacturability, ethics, health, safety issues, and social and political issues according to the nature of the design.)
4) Ability to select and use modern techniques and tools needed for analyzing and solving complex problems encountered in engineering practice; ability to employ information technologies effectively.
5) Ability to design and conduct experiments, gather data, analyze and interpret results for investigating complex engineering problems or discipline specific research questions.
6) Ability to work efficiently in intra-disciplinary and multi-disciplinary teams; ability to work individually.
7) Ability to communicate effectively, both orally and in writing; knowledge of a minimum of one foreign language; ability to write effective reports and comprehend written reports, prepare design and production reports, make effective presentations, and give and receive clear and intelligible instructions.
8) Recognition of the need for lifelong learning; ability to access information, to follow developments in science and technology, and to continue to educate him/herself.
9) Knowledge on behavior according ethical principles, professional and ethical responsibility and standards used in engineering practices.
10) Knowledge about business life practices such as project management, risk management, and change management; awareness in entrepreneurship, innovation; knowledge about sustainable development.
11) Knowledge about contemporary issues and the global and societal effects of engineering practices on health, environment, and safety; awareness of the legal consequences of engineering solutions.

Course - Learning Outcome Relationship

No Effect 1 Lowest 2 Low 3 Average 4 High 5 Highest
           
Program Outcomes Level of Contribution
1) Adequate knowledge in mathematics, science and engineering subjects pertaining to the relevant discipline; ability to use theoretical and applied information in these areas to model and solve engineering problems.
2) Ability to identify, formulate, and solve complex engineering problems; ability to select and apply proper analysis and modelling methods for this purpose.
3) Ability to design a complex system, process, device or product under realistic constraints and conditions, in such a way so as to meet the desired result; ability to apply modern design methods for this purpose. (Realistic constraints and conditions may include factors such as economic and environmental issues, sustainability, manufacturability, ethics, health, safety issues, and social and political issues according to the nature of the design.)
4) Ability to select and use modern techniques and tools needed for analyzing and solving complex problems encountered in engineering practice; ability to employ information technologies effectively.
5) Ability to design and conduct experiments, gather data, analyze and interpret results for investigating complex engineering problems or discipline specific research questions.
6) Ability to work efficiently in intra-disciplinary and multi-disciplinary teams; ability to work individually.
7) Ability to communicate effectively, both orally and in writing; knowledge of a minimum of one foreign language; ability to write effective reports and comprehend written reports, prepare design and production reports, make effective presentations, and give and receive clear and intelligible instructions.
8) Recognition of the need for lifelong learning; ability to access information, to follow developments in science and technology, and to continue to educate him/herself.
9) Knowledge on behavior according ethical principles, professional and ethical responsibility and standards used in engineering practices.
10) Knowledge about business life practices such as project management, risk management, and change management; awareness in entrepreneurship, innovation; knowledge about sustainable development.
11) Knowledge about contemporary issues and the global and societal effects of engineering practices on health, environment, and safety; awareness of the legal consequences of engineering solutions.

Learning Activity and Teaching Methods

Assessment & Grading Methods and Criteria

Written Exam (Open-ended questions, multiple choice, true-false, matching, fill in the blanks, sequencing)

Assessment & Grading

Semester Requirements Number of Activities Level of Contribution
Midterms 1 % 40
Final 1 % 60
total % 100
PERCENTAGE OF SEMESTER WORK % 40
PERCENTAGE OF FINAL WORK % 60
total % 100

Workload and ECTS Credit Grading

Activities Number of Activities Workload
Course Hours 13 26
Midterms 1 1
Final 1 1
Total Workload 28