Geomatic Engineering | |||||
Bachelor | TR-NQF-HE: Level 6 | QF-EHEA: First Cycle | EQF-LLL: Level 6 |
Course Code: | SPOR301 | ||||||||
Course Name: | Sports Seminar 5 | ||||||||
Course Semester: | Spring | ||||||||
Course Credits: |
|
||||||||
Language of instruction: | TR | ||||||||
Course Requisites: | |||||||||
Does the Course Require Work Experience?: | No | ||||||||
Type of course: | University Elective | ||||||||
Course Level: |
|
||||||||
Mode of Delivery: | Face to face | ||||||||
Course Coordinator : | Dr.Öğr.Üyesi GÖKHAN ÇETİNKAYA | ||||||||
Course Lecturer(s): |
Öğr.Gör. SERKAN ALPYAGİL |
||||||||
Course Assistants: |
Course Objectives: | The aim of this course is to bring together successful and well-known people in the sports industry with students, and to transfer the experiences and knowledge of people in the industry to students. |
Course Content: | • Uses basic concepts of sports seminar. • Defines the function, goals and philosophy of the sports seminar. |
The students who have succeeded in this course;
|
Week | Subject | Related Preparation |
1) | Meeting and course content | -- |
2) | The aim of the seminar course | -- |
3) | Participation in Recreation Fair | -- |
4) | Panel (Guest: About motorsport and navigation) | -- |
5) | Panel (Guest: About e-sports) | -- |
6) | Panel (Available applications) | -- |
7) | Panel (Guest: Sports Medicine) | -- |
8) | Panel (Guest: Sports economy) | -- |
9) | Midterm exam | |
10) | Panel (Guest: Sports media) | -- |
11) | Panel (Guest: Sport psychology) | -- |
12) | Panel (Guest: Sports in the public) | -- |
13) | recreational trip | -- |
14) | Final examination | -- |
Course Notes / Textbooks: | • Pedersen P, Thibault L. (2014). Contemporary Sport Management. 5th. Edition, Human Kinetics, USA. |
References: | • Bernard J., M., Stephen H., W., Sutton A. (2014). Sport Marketing. 4th . Edition Human Kinetics, USA. |
Learning Outcomes | 1 |
2 |
||||||||
---|---|---|---|---|---|---|---|---|---|---|
Program Outcomes | ||||||||||
1) Awareness of professional and ethical responsibility. | ||||||||||
2) Adequate knowledge in mathematics, science and engineering subjects pertaining to the relevant discipline; ability to use theoretical and applied information in these areas to model and solve engineering problems. | ||||||||||
3) Ability to communicate effectively i Turkish, both orally and in writing; knowledge of a minimum of one foreign language. | ||||||||||
4) Information about business life practices such as project management, risk management, and change management; awareness of entrepreneurship, innovation, and sustainable development. | ||||||||||
5) Ability to design a complex system, process, device or product under realistic constraints and conditions, in such a way so as to meet the desired result; ability to apply modern design methods for this purpose. (Realistic constraints and conditions may include factors such as economic and environmental issues, sustainability, manufacturability, ethics, health, safety isuues, and social and political issues according to the nature of the design.) | ||||||||||
6) Ability to work efficiently in intra-disciplinary and multi-disciplinary teams; ability to work individually. | ||||||||||
7) Ability to devise, select, and use modern techniques and tools needed for engineering practice; ability to employ information technologies effectively. | ||||||||||
8) Ability to identify, formulate, and solve complex engineering problems; ability to select and apply proper analysis and modelling methods for this purpose. | ||||||||||
9) Knowledge about contemporary issues and the global and societal effects of engineering practices on health, environment, and safety; awareness of the legal consequences of engineering solutions. | ||||||||||
10) Recognition of the need for lifelong learning; ability to access information, to follow developments in science and technology, and to continue to educate him/herself. | ||||||||||
11) Ability to design and conduct experiments, gather data, analyse and interpret results for investigating engineering problems. |
No Effect | 1 Lowest | 2 Low | 3 Average | 4 High | 5 Highest |
Program Outcomes | Level of Contribution | |
1) | Awareness of professional and ethical responsibility. | |
2) | Adequate knowledge in mathematics, science and engineering subjects pertaining to the relevant discipline; ability to use theoretical and applied information in these areas to model and solve engineering problems. | |
3) | Ability to communicate effectively i Turkish, both orally and in writing; knowledge of a minimum of one foreign language. | |
4) | Information about business life practices such as project management, risk management, and change management; awareness of entrepreneurship, innovation, and sustainable development. | |
5) | Ability to design a complex system, process, device or product under realistic constraints and conditions, in such a way so as to meet the desired result; ability to apply modern design methods for this purpose. (Realistic constraints and conditions may include factors such as economic and environmental issues, sustainability, manufacturability, ethics, health, safety isuues, and social and political issues according to the nature of the design.) | |
6) | Ability to work efficiently in intra-disciplinary and multi-disciplinary teams; ability to work individually. | |
7) | Ability to devise, select, and use modern techniques and tools needed for engineering practice; ability to employ information technologies effectively. | |
8) | Ability to identify, formulate, and solve complex engineering problems; ability to select and apply proper analysis and modelling methods for this purpose. | |
9) | Knowledge about contemporary issues and the global and societal effects of engineering practices on health, environment, and safety; awareness of the legal consequences of engineering solutions. | |
10) | Recognition of the need for lifelong learning; ability to access information, to follow developments in science and technology, and to continue to educate him/herself. | |
11) | Ability to design and conduct experiments, gather data, analyse and interpret results for investigating engineering problems. |
Written Exam (Open-ended questions, multiple choice, true-false, matching, fill in the blanks, sequencing) |
Semester Requirements | Number of Activities | Level of Contribution |
Midterms | 1 | % 40 |
Final | 1 | % 60 |
total | % 100 | |
PERCENTAGE OF SEMESTER WORK | % 40 | |
PERCENTAGE OF FINAL WORK | % 60 | |
total | % 100 |
Activities | Number of Activities | Workload |
Course Hours | 13 | 26 |
Midterms | 1 | 1 |
Final | 1 | 1 |
Total Workload | 28 |