FTR218 Radiology Istanbul Okan UniversityDegree Programs Geomatic EngineeringGeneral Information For StudentsDiploma SupplementErasmus Policy StatementNational Qualifications
Geomatic Engineering
Bachelor TR-NQF-HE: Level 6 QF-EHEA: First Cycle EQF-LLL: Level 6

General course introduction information

Course Code: FTR218
Course Name: Radiology
Course Semester: Spring
Course Credits:
Theoretical Practical Credit ECTS
2 0 2 2
Language of instruction: TR
Course Requisites:
Does the Course Require Work Experience?: No
Type of course: University Elective
Course Level:
Bachelor TR-NQF-HE:6. Master`s Degree QF-EHEA:First Cycle EQF-LLL:6. Master`s Degree
Mode of Delivery: Face to face
Course Coordinator : Dr.Öğr.Üyesi GAMZE AYDIN
Course Lecturer(s): Dr.Öğr.Üyesi LÜTFİ İHSAN KURU
Course Assistants:

Course Objective and Content

Course Objectives: The aim of the course is to teach the students basic concepts in radiology, radiography, computed tomography, magnetic resonance imaging, extremities, spine, and thorax radiology.
Course Content: Basic concepts in radiology, radiography, computed tomography, magnetic resonance imaging, extremities, spine, and thorax radiology

Learning Outcomes

The students who have succeeded in this course;
Learning Outcomes
1 - Knowledge
Theoretical - Conceptual
1) Defines basic concepts in radiology.
2) Learns basic evaluation in extremity, spine, thorax and respiratory radiology
3) Learns basic soft tissue imaging methods.
2 - Skills
Cognitive - Practical
3 - Competences
Communication and Social Competence
Learning Competence
Field Specific Competence
Competence to Work Independently and Take Responsibility

Lesson Plan

Week Subject Related Preparation
1) Physics for radiology none
2) Radiological anatomy: extremities, pelvis none
3) Radiological anatomy: spine, thorax none
4) Radiological pathology: fractures, subluxation, dislocation, neoplasm, atrophy, sclerosis, infection, implants, peripheral nerve lesions none
5) Radiology in thorax pathologies and related special conditions none
6) Regional pathologies and evaluation: cervical and lumbar spine none
7) Regional pathologies and evaluation: pelvis and hip none
8) midterm exam none
9) Regional pathologies and evaluation: knee, ankle, foot none
10) Regional pathologies and evaluation: shoulder, elbow, wrist, hand none
11) Different tissue pathologies: bone, cartilage none
12) Different tissue pathologies: nerve none
13) Different tissue pathologies: muscle none
14) Different tissue pathologies: tendon, ligament none
15) final exam none

Sources

Course Notes / Textbooks: ders notları
References: course notes

Course-Program Learning Outcome Relationship

Learning Outcomes

1

2

3

Program Outcomes
1) Awareness of professional and ethical responsibility.
2) Adequate knowledge in mathematics, science and engineering subjects pertaining to the relevant discipline; ability to use theoretical and applied information in these areas to model and solve engineering problems.
3) Ability to communicate effectively i Turkish, both orally and in writing; knowledge of a minimum of one foreign language.
4) Information about business life practices such as project management, risk management, and change management; awareness of entrepreneurship, innovation, and sustainable development.
5) Ability to design a complex system, process, device or product under realistic constraints and conditions, in such a way so as to meet the desired result; ability to apply modern design methods for this purpose. (Realistic constraints and conditions may include factors such as economic and environmental issues, sustainability, manufacturability, ethics, health, safety isuues, and social and political issues according to the nature of the design.)
6) Ability to work efficiently in intra-disciplinary and multi-disciplinary teams; ability to work individually.
7) Ability to devise, select, and use modern techniques and tools needed for engineering practice; ability to employ information technologies effectively.
8) Ability to identify, formulate, and solve complex engineering problems; ability to select and apply proper analysis and modelling methods for this purpose.
9) Knowledge about contemporary issues and the global and societal effects of engineering practices on health, environment, and safety; awareness of the legal consequences of engineering solutions.
10) Recognition of the need for lifelong learning; ability to access information, to follow developments in science and technology, and to continue to educate him/herself.
11) Ability to design and conduct experiments, gather data, analyse and interpret results for investigating engineering problems.

Course - Learning Outcome Relationship

No Effect 1 Lowest 2 Low 3 Average 4 High 5 Highest
           
Program Outcomes Level of Contribution
1) Awareness of professional and ethical responsibility.
2) Adequate knowledge in mathematics, science and engineering subjects pertaining to the relevant discipline; ability to use theoretical and applied information in these areas to model and solve engineering problems.
3) Ability to communicate effectively i Turkish, both orally and in writing; knowledge of a minimum of one foreign language.
4) Information about business life practices such as project management, risk management, and change management; awareness of entrepreneurship, innovation, and sustainable development.
5) Ability to design a complex system, process, device or product under realistic constraints and conditions, in such a way so as to meet the desired result; ability to apply modern design methods for this purpose. (Realistic constraints and conditions may include factors such as economic and environmental issues, sustainability, manufacturability, ethics, health, safety isuues, and social and political issues according to the nature of the design.)
6) Ability to work efficiently in intra-disciplinary and multi-disciplinary teams; ability to work individually.
7) Ability to devise, select, and use modern techniques and tools needed for engineering practice; ability to employ information technologies effectively.
8) Ability to identify, formulate, and solve complex engineering problems; ability to select and apply proper analysis and modelling methods for this purpose.
9) Knowledge about contemporary issues and the global and societal effects of engineering practices on health, environment, and safety; awareness of the legal consequences of engineering solutions.
10) Recognition of the need for lifelong learning; ability to access information, to follow developments in science and technology, and to continue to educate him/herself.
11) Ability to design and conduct experiments, gather data, analyse and interpret results for investigating engineering problems.

Learning Activity and Teaching Methods

Expression
Reading
Homework
Q&A / Discussion

Assessment & Grading Methods and Criteria

Written Exam (Open-ended questions, multiple choice, true-false, matching, fill in the blanks, sequencing)

Assessment & Grading

Semester Requirements Number of Activities Level of Contribution
Midterms 1 % 40
Final 1 % 60
total % 100
PERCENTAGE OF SEMESTER WORK % 40
PERCENTAGE OF FINAL WORK % 60
total % 100

Workload and ECTS Credit Grading

Activities Number of Activities Duration (Hours) Workload
Course Hours 1 28 28
Study Hours Out of Class 1 30 30
Midterms 1 1 1
Final 1 1 1
Total Workload 60