Civil Engineering (English) | |||||
Bachelor | TR-NQF-HE: Level 6 | QF-EHEA: First Cycle | EQF-LLL: Level 6 |
Course Code: | MATH266 | ||||||||
Course Name: | Probability and Statistics - II | ||||||||
Course Semester: | Spring | ||||||||
Course Credits: |
|
||||||||
Language of instruction: | EN | ||||||||
Course Requisites: |
MATH265 - Probability & Statistics I |
||||||||
Does the Course Require Work Experience?: | No | ||||||||
Type of course: | Compulsory | ||||||||
Course Level: |
|
||||||||
Mode of Delivery: | Face to face | ||||||||
Course Coordinator : | Dr.Öğr.Üyesi MESERET TUBA GÜLPINAR | ||||||||
Course Lecturer(s): |
Prof. Dr. AHMET FAHRİ ÖZOK ÖZLEM VARDAR |
||||||||
Course Assistants: |
Course Objectives: | The aimed of this course to give the students fundamental concepts of distribution of the mean and variance, estimation problems and test of hypothesis based on basic concept of Probability and Statistic I. |
Course Content: | Distribution of the mean and variance, fundamental concepts of estimation problems and test of hypothesis based on basic concept of Probability and Statistic I. |
The students who have succeeded in this course;
|
Week | Subject | Related Preparation |
1) | The relationship among Normal, Binomial, Poisson, Multinomial, Hypergeometric etc Distributions, Population and Sample, Statistical Inference, Population Parameters, Sample Statistics, Sampling Distribution of Means, Sampling Distribution of Proportions, Sampling Distribution of Variances, Frequency Distributions, Statistical Decisions, Statistical Hypotheses, Test of Hypotheses and Significance, Type I and Type II Errors, One Tailed and Two Tailed Tests, Special Test of Significance for Large Samples | None. |
Course Notes / Textbooks: | Walpole/Myers/Myers/Ye, Probability and Statistics for Engineers and Scientists, Person, 9th Edition, 2002 |
References: | Ders Notları |
Learning Outcomes | 1 |
2 |
3 |
|||||||
---|---|---|---|---|---|---|---|---|---|---|
Program Outcomes | ||||||||||
1) Adequate knowledge in mathematics, science and engineering subjects pertaining to the relevant discipline; ability to use theoretical and applied information in these areas to model and solve engineering problems. | ||||||||||
2) Ability to identify, formulate, and solve complex engineering problems; ability to select and apply proper analysis and modelling methods for this purpose. | ||||||||||
3) Ability to design a complex system, process, device or product under realistic constraints and conditions, in such a way so as to meet the desired result; ability to apply modern design methods for this purpose. (Realistic constraints and conditions may include factors such as economic and environmental issues, sustainability, manufacturability, ethics, health, safety issues, and social and political issues according to the nature of the design.) | ||||||||||
4) Ability to select and use modern techniques and tools needed for analyzing and solving complex problems encountered in engineering practice; ability to employ information technologies effectively. | ||||||||||
5) Ability to design and conduct experiments, gather data, analyze and interpret results for investigating complex engineering problems or discipline specific research questions. | ||||||||||
6) Ability to work efficiently in intra-disciplinary and multi-disciplinary teams; ability to work individually. | ||||||||||
7) Ability to communicate effectively, both orally and in writing; knowledge of a minimum of one foreign language; ability to write effective reports and comprehend written reports, prepare design and production reports, make effective presentations, and give and receive clear and intelligible instructions. | ||||||||||
8) Recognition of the need for lifelong learning; ability to access information, to follow developments in science and technology, and to continue to educate him/herself. | ||||||||||
9) Knowledge on behavior according ethical principles, professional and ethical responsibility and standards used in engineering practices. | ||||||||||
10) Knowledge about business life practices such as project management, risk management, and change management; awareness in entrepreneurship, innovation; knowledge about sustainable development. | ||||||||||
11) Knowledge about contemporary issues and the global and societal effects of engineering practices on health, environment, and safety; awareness of the legal consequences of engineering solutions. |
No Effect | 1 Lowest | 2 Low | 3 Average | 4 High | 5 Highest |
Program Outcomes | Level of Contribution | |
1) | Adequate knowledge in mathematics, science and engineering subjects pertaining to the relevant discipline; ability to use theoretical and applied information in these areas to model and solve engineering problems. | 5 |
2) | Ability to identify, formulate, and solve complex engineering problems; ability to select and apply proper analysis and modelling methods for this purpose. | |
3) | Ability to design a complex system, process, device or product under realistic constraints and conditions, in such a way so as to meet the desired result; ability to apply modern design methods for this purpose. (Realistic constraints and conditions may include factors such as economic and environmental issues, sustainability, manufacturability, ethics, health, safety issues, and social and political issues according to the nature of the design.) | |
4) | Ability to select and use modern techniques and tools needed for analyzing and solving complex problems encountered in engineering practice; ability to employ information technologies effectively. | |
5) | Ability to design and conduct experiments, gather data, analyze and interpret results for investigating complex engineering problems or discipline specific research questions. | |
6) | Ability to work efficiently in intra-disciplinary and multi-disciplinary teams; ability to work individually. | |
7) | Ability to communicate effectively, both orally and in writing; knowledge of a minimum of one foreign language; ability to write effective reports and comprehend written reports, prepare design and production reports, make effective presentations, and give and receive clear and intelligible instructions. | |
8) | Recognition of the need for lifelong learning; ability to access information, to follow developments in science and technology, and to continue to educate him/herself. | |
9) | Knowledge on behavior according ethical principles, professional and ethical responsibility and standards used in engineering practices. | |
10) | Knowledge about business life practices such as project management, risk management, and change management; awareness in entrepreneurship, innovation; knowledge about sustainable development. | |
11) | Knowledge about contemporary issues and the global and societal effects of engineering practices on health, environment, and safety; awareness of the legal consequences of engineering solutions. |
Lesson | |
Reading | |
Problem Solving | |
Q&A / Discussion |
Written Exam (Open-ended questions, multiple choice, true-false, matching, fill in the blanks, sequencing) |
Semester Requirements | Number of Activities | Level of Contribution |
Midterms | 2 | % 50 |
Final | 1 | % 50 |
total | % 100 | |
PERCENTAGE OF SEMESTER WORK | % 50 | |
PERCENTAGE OF FINAL WORK | % 50 | |
total | % 100 |
Activities | Number of Activities | Duration (Hours) | Workload |
Course Hours | 15 | 3 | 45 |
Study Hours Out of Class | 15 | 3 | 45 |
Midterms | 2 | 15 | 30 |
Final | 1 | 20 | 20 |
Total Workload | 140 |