PSY436 Interview Techniques IIIstanbul Okan UniversityDegree Programs Automotive Engineering (English)General Information For StudentsDiploma SupplementErasmus Policy StatementNational Qualifications
Automotive Engineering (English)
Bachelor TR-NQF-HE: Level 6 QF-EHEA: First Cycle EQF-LLL: Level 6

General course introduction information

Course Code: PSY436
Course Name: Interview Techniques II
Course Semester: Spring
Course Credits:
Theoretical Practical Credit ECTS
2 2 3 7
Language of instruction:
Course Requisites:
Does the Course Require Work Experience?: No
Type of course: University Elective
Course Level:
Bachelor TR-NQF-HE:6. Master`s Degree QF-EHEA:First Cycle EQF-LLL:6. Master`s Degree
Mode of Delivery: Face to face
Course Coordinator : Dr.Öğr.Üyesi EVİN AYDIN YÖNTEM
Course Lecturer(s):
Course Assistants:

Course Objective and Content

Course Objectives: The aim of this course is to introduce the student to interview techniques and to discuss the basic concepts of interviewing.
Course Content: This course includes the external factors and atmosphere of the interview, the internal factors and atmosphere of the interview, the opening of the first interview, initiation, development and closing, attitudes and behaviors in the interview, recording the interview, asking questions and types of questions and defining communication.

Learning Outcomes

The students who have succeeded in this course;
Learning Outcomes
1 - Knowledge
Theoretical - Conceptual
1) To have basic and general knowledge about clinical psychology and behavioral disorders and interview techniques.
2) To be able to follow current developments in this field and its applications.
3) To be able to explain to various audiences about interview techniques and offer solutions.
4) Demonstrating an approach to understanding the subject of psychopathology with its psychological, social and physical aspects.
5) To be able to collaborate and practice with interdisciplinary and interdisciplinary experts.
2 - Skills
Cognitive - Practical
3 - Competences
Competence to Work Independently and Take Responsibility
Field Specific Competence
Learning Competence
Communication and Social Competence

Lesson Plan

Week Subject Related Preparation
1) Introduction and Overview of the Course Lecturer's notes and related articles
2) Interview Techniques Lecturer's notes and related articles
3) Building Rapport Lecturer's notes and related articles
4) Interview Methods Lecturer's notes and related articles
5) Clinical Interview Techniques Lecturer's notes and related articles
6) Cognitive Interview Techniques Lecturer's notes and related articles
7) Special Topics Lecturer's notes and related articles
8) Midterm None
9) Midterm / Evaluation Lecturer's notes and related articles
10) Signs and Symptoms of Clinical Interest Lecturer's notes and related articles
11) Termination & Coping with Resistance Lecturer's notes and related articles
12) Special or Difficult Patient Behaviors and Problems Lecturer's notes and related articles
13) Sharing Findings with Clients & Coping with Problems on Interview Lecturer's notes and related articles
14) Role-play Week Lecturer's notes and related articles
15) Review Lecturer's notes and related articles
16) Final None

Sources

Course Notes / Textbooks: İlk Görüşme. James Morrison (2019). Dördüncü Basımdan Çeviri (Çev. Ed. Sait Uluç, İ.Volkan Gülüm, Ece Ataman). Nobel Yayınları
References: İlk Görüşme. James Morrison (2019). Dördüncü Basımdan Çeviri (Çev. Ed. Sait Uluç, İ.Volkan Gülüm, Ece Ataman). Nobel Yayınları

Course-Program Learning Outcome Relationship

Learning Outcomes

1

2

3

4

5

Program Outcomes
1) Sufficient knowledge in mathematics, science and engineering related to their branches; and the ability to apply theoretical and practical knowledge in these areas to model and solve engineering problems.
2) The ability to identify, formulate, and solve complex engineering problems; selecting and applying appropriate analysis and modeling methods for this purpose.
3) The ability to design a complex system, process, device or product under realistic constraints and conditions to meet specific requirements; the ability to apply modern design methods for this purpose. (Realistic constraints and conditions include such issues as economy, environmental issues, sustainability, manufacturability, ethics, health, safety, social and political issues, according to the nature of design.)
4) Ability to develop, select and use modern techniques and tools necessary for engineering applications; ability to use information technologies effectively.
5) Ability to design experiments, conduct experiments, collect data, analyze and interpret results to examine engineering problems or discipline-specific research topics.
6) The ability to work effectively in disciplinary and multidisciplinary teams; individual work skill.
7) Effective communication skills in Turkish oral and written communication; at least one foreign language knowledge; ability to write effective reports and understand written reports, to prepare design and production reports, to make effective presentations, to give and receive clear and understandable instructions.
8) Awareness of the need for lifelong learning; access to knowledge, ability to follow developments in science and technology, and constant self-renewal.
9) Conform to ethical principles, and standards of professional and ethical responsibility; be informed about the standards used in engineering applications.
10) Awareness of applications in business, such as project management, risk management and change management; awareness of entrepreneurship, and innovation; information about sustainable development.
11) Information about the universal and social health, environmental and safety effects of engineering applications and the ways in which contemporary problems are reflected in the engineering field; awareness of the legal consequences of engineering solutions.
12) Knowledge on advanced calculus, including differential equations applicable to automotive engineering; familiarity with statistics and linear algebra; knowledge on chemistry, calculus-based physics, dynamics, structural mechanics, structure and properties of materials, fluid dynamics, heat transfer, manufacturing processes, electronics and control, design of vehicle elements, vehicle dynamics, vehicle power train systems, automotive related regulations and vehicle validation/verification tests; ability to integrate and apply this knowledge to solve multidisciplinary automotive problems; ability to apply theoretical, experimental and simulation methods and, computer aided design techniques in the field of automotive engineering; ability to work in the field of vehicle design and manufacturing.

Course - Learning Outcome Relationship

No Effect 1 Lowest 2 Low 3 Average 4 High 5 Highest
           
Program Outcomes Level of Contribution
1) Sufficient knowledge in mathematics, science and engineering related to their branches; and the ability to apply theoretical and practical knowledge in these areas to model and solve engineering problems.
2) The ability to identify, formulate, and solve complex engineering problems; selecting and applying appropriate analysis and modeling methods for this purpose.
3) The ability to design a complex system, process, device or product under realistic constraints and conditions to meet specific requirements; the ability to apply modern design methods for this purpose. (Realistic constraints and conditions include such issues as economy, environmental issues, sustainability, manufacturability, ethics, health, safety, social and political issues, according to the nature of design.)
4) Ability to develop, select and use modern techniques and tools necessary for engineering applications; ability to use information technologies effectively.
5) Ability to design experiments, conduct experiments, collect data, analyze and interpret results to examine engineering problems or discipline-specific research topics.
6) The ability to work effectively in disciplinary and multidisciplinary teams; individual work skill.
7) Effective communication skills in Turkish oral and written communication; at least one foreign language knowledge; ability to write effective reports and understand written reports, to prepare design and production reports, to make effective presentations, to give and receive clear and understandable instructions.
8) Awareness of the need for lifelong learning; access to knowledge, ability to follow developments in science and technology, and constant self-renewal.
9) Conform to ethical principles, and standards of professional and ethical responsibility; be informed about the standards used in engineering applications.
10) Awareness of applications in business, such as project management, risk management and change management; awareness of entrepreneurship, and innovation; information about sustainable development.
11) Information about the universal and social health, environmental and safety effects of engineering applications and the ways in which contemporary problems are reflected in the engineering field; awareness of the legal consequences of engineering solutions.
12) Knowledge on advanced calculus, including differential equations applicable to automotive engineering; familiarity with statistics and linear algebra; knowledge on chemistry, calculus-based physics, dynamics, structural mechanics, structure and properties of materials, fluid dynamics, heat transfer, manufacturing processes, electronics and control, design of vehicle elements, vehicle dynamics, vehicle power train systems, automotive related regulations and vehicle validation/verification tests; ability to integrate and apply this knowledge to solve multidisciplinary automotive problems; ability to apply theoretical, experimental and simulation methods and, computer aided design techniques in the field of automotive engineering; ability to work in the field of vehicle design and manufacturing.

Learning Activity and Teaching Methods

Expression
Brainstorming/ Six tihnking hats
Individual study and homework
Lesson
Reading
Homework
Report Writing
Q&A / Discussion

Assessment & Grading Methods and Criteria

Written Exam (Open-ended questions, multiple choice, true-false, matching, fill in the blanks, sequencing)
Homework
Individual Project
Presentation
Reporting

Assessment & Grading

Semester Requirements Number of Activities Level of Contribution
Homework Assignments 2 % 10
Presentation 1 % 10
Midterms 1 % 30
Final 1 % 40
Paper Submission 1 % 10
total % 100
PERCENTAGE OF SEMESTER WORK % 60
PERCENTAGE OF FINAL WORK % 40
total % 100

Workload and ECTS Credit Grading

Activities Number of Activities Workload
Course Hours 16 48
Application 16 32
Study Hours Out of Class 16 48
Presentations / Seminar 7 21
Project 5 20
Homework Assignments 8 16
Midterms 1 3
Paper Submission 8 16
Final 1 3
Total Workload 207