ECE531 Advanced Electronic Design TechniquesIstanbul Okan UniversityDegree Programs Power Electronics and Clean Energy Systems (English) with thesisGeneral Information For StudentsDiploma SupplementErasmus Policy StatementNational Qualifications
Power Electronics and Clean Energy Systems (English) with thesis
Master TR-NQF-HE: Level 7 QF-EHEA: Second Cycle EQF-LLL: Level 7

General course introduction information

Course Code: ECE531
Course Name: Advanced Electronic Design Techniques
Course Semester: Spring
Course Credits:
Theoretical Practical Credit ECTS
3 0 3 10
Language of instruction: EN
Course Requisites:
Does the Course Require Work Experience?: No
Type of course: Department Elective
Course Level:
Master TR-NQF-HE:7. Master`s Degree QF-EHEA:Second Cycle EQF-LLL:7. Master`s Degree
Mode of Delivery: Face to face
Course Coordinator : Dr.Öğr.Üyesi DİDEM KIVANÇ TÜRELİ
Course Lecturer(s):
Course Assistants:

Course Objective and Content

Course Objectives: To learn analysis and design of analog integrated circuit blocks in CMOS technology
Course Content: Operation of MOS transistor, Current mirrors, single stage amplifiers, differential amplifiers, operational amplifiers, frequency response of amplifiers, bandgap reference circuits

Learning Outcomes

The students who have succeeded in this course;
Learning Outcomes
1 - Knowledge
Theoretical - Conceptual
1) Students will learn the concept of noise and noise contributors of a transistor
2 - Skills
Cognitive - Practical
3 - Competences
Communication and Social Competence
Learning Competence
Field Specific Competence
1) Students will get familiar with mixer, image reject mixers, modulators, SSB modulation and constellation diagrams.
Competence to Work Independently and Take Responsibility

Lesson Plan

Week Subject Related Preparation
1) Course introduction None
2) Negative feedback systems and stability None
3) Opamp at the block level; Frequency compensation None
4) Opamp amplifiers None
5) Components available on an IC None
6) Noise in resistors and MOS transistors None
7) Review of basic amplifier stages None
8) Single ended opamp design None
9) Fully differential opamp design None
10) Phase locked loop None
11) Reference voltage and current generators None
12) Low dropout regulators None
13) Continuous time filters None
14) Switched capacitor filters None

Sources

Course Notes / Textbooks: Class Notes
References: Design of Analog CMOS Integrated Circuits, Behzad Razavi, ISBN: 978-0-072-38032-3
Analog Integrated Circuit Design, David A. Johns, Ken Martin, ISBN: 978-0-471-14448-9

Course-Program Learning Outcome Relationship

Learning Outcomes

1

2

Program Outcomes
1) Reaches the information in the field of power electronics and clean energy systems in depth through scientific researches; evaluates the knowledge, interprets and implements.
2) Has the extensive information about current techniques and their constraints in the field of Power Electronics .
3) Using limited or missing data, completes the information through scientific methods and applies; integrates the information from different disciplines.
4) Aware of new and emerging applications of his/her profession; learn and examine them if needed.
5) Builds the Power Electronics problems, develops methods to solve and implements innovative ways for solution.
6) Develops new and/or original ideas and methods; develops innovative solutions for the design of a process, system or component.
7) Designs and implements the analytical, modeling and experimental-based researches; resolves the complex situations encountered in this process and interprets.
8) Leads multi-disciplinary teams, develops solution approaches to complex situations and takes responsibility.
9) Uses at least one foreign language at the general level of European Language Portfolio B2 and communicates effectively in oral and written language.
10) Presents the process and results of the work in national and international media systematically and clearly in written or oral language.
11) Describe the social and environmental dimensions of Power Electronics Engineering applications.
12) In the stages of data collection, interpretation and publication as well as all professional activities, he/she considers the social, scientific and ethical values.

Course - Learning Outcome Relationship

No Effect 1 Lowest 2 Low 3 Average 4 High 5 Highest
           
Program Outcomes Level of Contribution
1) Reaches the information in the field of power electronics and clean energy systems in depth through scientific researches; evaluates the knowledge, interprets and implements.
2) Has the extensive information about current techniques and their constraints in the field of Power Electronics .
3) Using limited or missing data, completes the information through scientific methods and applies; integrates the information from different disciplines.
4) Aware of new and emerging applications of his/her profession; learn and examine them if needed.
5) Builds the Power Electronics problems, develops methods to solve and implements innovative ways for solution.
6) Develops new and/or original ideas and methods; develops innovative solutions for the design of a process, system or component.
7) Designs and implements the analytical, modeling and experimental-based researches; resolves the complex situations encountered in this process and interprets.
8) Leads multi-disciplinary teams, develops solution approaches to complex situations and takes responsibility.
9) Uses at least one foreign language at the general level of European Language Portfolio B2 and communicates effectively in oral and written language.
10) Presents the process and results of the work in national and international media systematically and clearly in written or oral language.
11) Describe the social and environmental dimensions of Power Electronics Engineering applications.
12) In the stages of data collection, interpretation and publication as well as all professional activities, he/she considers the social, scientific and ethical values.

Learning Activity and Teaching Methods

Lesson
Homework
Project preparation

Assessment & Grading Methods and Criteria

Written Exam (Open-ended questions, multiple choice, true-false, matching, fill in the blanks, sequencing)
Homework
Individual Project

Assessment & Grading

Semester Requirements Number of Activities Level of Contribution
Attendance 42 % 0
Project 1 % 30
Midterms 1 % 30
Final 1 % 40
total % 100
PERCENTAGE OF SEMESTER WORK % 60
PERCENTAGE OF FINAL WORK % 40
total % 100

Workload and ECTS Credit Grading

Activities Number of Activities Duration (Hours) Workload
Course Hours 14 3 42
Project 1 24 24
Homework Assignments 2 16 32
Midterms 1 16 16
Final 1 24 24
Total Workload 138