AIE504 Machine Learning Istanbul Okan UniversityDegree Programs Power Electronics and Clean Energy Systems (English) with thesisGeneral Information For StudentsDiploma SupplementErasmus Policy StatementNational Qualifications
Power Electronics and Clean Energy Systems (English) with thesis
Master TR-NQF-HE: Level 7 QF-EHEA: Second Cycle EQF-LLL: Level 7

General course introduction information

Course Code: AIE504
Course Name: Machine Learning
Course Semester: Fall
Course Credits:
Theoretical Practical Credit ECTS
3 0 3 10
Language of instruction: EN
Course Requisites:
Does the Course Require Work Experience?: No
Type of course: Department Elective
Course Level:
Master TR-NQF-HE:7. Master`s Degree QF-EHEA:Second Cycle EQF-LLL:7. Master`s Degree
Mode of Delivery: Face to face
Course Coordinator : Prof. Dr. BEKİR TEVFİK AKGÜN
Course Lecturer(s): Dr.Öğr.Üyesi SİNA ALP
Course Assistants:

Course Objective and Content

Course Objectives: A. Explaining the Elective Course Topic
B. Using Elective Course Methods / Tools
C. To produce solutions in Elective Course.
Course Content: History of games and current game trends. Basics of game design and development. Basics of game design. Simulation creation. The use of artificial intelligence in games. The place of physics and mathematics in games. Computer graphics concepts used in games. Human computer interaction in game development.

Learning Outcomes

The students who have succeeded in this course;
Learning Outcomes
1 - Knowledge
Theoretical - Conceptual
1) A. Explains Elective Course Subject.
2) B. Uses Elective Course Methods / Tools.
2 - Skills
Cognitive - Practical
1) C. Elective Course produces solutions.
3 - Competences
Communication and Social Competence
Learning Competence
Field Specific Competence
Competence to Work Independently and Take Responsibility

Lesson Plan

Week Subject Related Preparation
1) History of games and current game trends Course Notes
2) Basics of game design and development Course Notes
3) Basics of game design and development Course Notes
4) Basics of game design Course notes
5) Creating simulation Course notes
6) Midterm Course notes
7) The use of artificial intelligence in games Course notes
8) The use of artificial intelligence in games Course notes
9) The place of physics and mathematics in games Course Notes
10) Computer graphics concepts used in games Course notes
11) Computer graphics concepts used in games Course notes
12) Human computer interaction in game development Course notes
13) Midterm Course note
14) Human computer interaction in game development Course notes
15) Final Exam Course Notes

Sources

Course Notes / Textbooks: Ders notları
References: Course Notes

Course-Program Learning Outcome Relationship

Learning Outcomes

1

2

3

Program Outcomes
1) Reaches the information in the field of power electronics and clean energy systems in depth through scientific researches; evaluates the knowledge, interprets and implements.
2) Has the extensive information about current techniques and their constraints in the field of Power Electronics .
3) Using limited or missing data, completes the information through scientific methods and applies; integrates the information from different disciplines.
4) Aware of new and emerging applications of his/her profession; learn and examine them if needed.
5) Builds the Power Electronics problems, develops methods to solve and implements innovative ways for solution.
6) Develops new and/or original ideas and methods; develops innovative solutions for the design of a process, system or component.
7) Designs and implements the analytical, modeling and experimental-based researches; resolves the complex situations encountered in this process and interprets.
8) Leads multi-disciplinary teams, develops solution approaches to complex situations and takes responsibility.
9) Uses at least one foreign language at the general level of European Language Portfolio B2 and communicates effectively in oral and written language.
10) Presents the process and results of the work in national and international media systematically and clearly in written or oral language.
11) Describe the social and environmental dimensions of Power Electronics Engineering applications.
12) In the stages of data collection, interpretation and publication as well as all professional activities, he/she considers the social, scientific and ethical values.

Course - Learning Outcome Relationship

No Effect 1 Lowest 2 Low 3 Average 4 High 5 Highest
           
Program Outcomes Level of Contribution
1) Reaches the information in the field of power electronics and clean energy systems in depth through scientific researches; evaluates the knowledge, interprets and implements.
2) Has the extensive information about current techniques and their constraints in the field of Power Electronics .
3) Using limited or missing data, completes the information through scientific methods and applies; integrates the information from different disciplines.
4) Aware of new and emerging applications of his/her profession; learn and examine them if needed.
5) Builds the Power Electronics problems, develops methods to solve and implements innovative ways for solution. 3
6) Develops new and/or original ideas and methods; develops innovative solutions for the design of a process, system or component.
7) Designs and implements the analytical, modeling and experimental-based researches; resolves the complex situations encountered in this process and interprets.
8) Leads multi-disciplinary teams, develops solution approaches to complex situations and takes responsibility.
9) Uses at least one foreign language at the general level of European Language Portfolio B2 and communicates effectively in oral and written language.
10) Presents the process and results of the work in national and international media systematically and clearly in written or oral language.
11) Describe the social and environmental dimensions of Power Electronics Engineering applications.
12) In the stages of data collection, interpretation and publication as well as all professional activities, he/she considers the social, scientific and ethical values.

Learning Activity and Teaching Methods

Expression
Brainstorming/ Six tihnking hats
Individual study and homework
Q&A / Discussion

Assessment & Grading Methods and Criteria

Written Exam (Open-ended questions, multiple choice, true-false, matching, fill in the blanks, sequencing)
Homework

Assessment & Grading

Semester Requirements Number of Activities Level of Contribution
Midterms 2 % 40
Final 1 % 60
total % 100
PERCENTAGE OF SEMESTER WORK % 40
PERCENTAGE OF FINAL WORK % 60
total % 100

Workload and ECTS Credit Grading

Activities Number of Activities Duration (Hours) Workload
Course Hours 15 3 45
Midterms 2 70 140
Final 1 100 100
Total Workload 285