SYON251 Sports LawIstanbul Okan UniversityDegree Programs Food Engineering (English)General Information For StudentsDiploma SupplementErasmus Policy StatementNational Qualifications
Food Engineering (English)
Bachelor TR-NQF-HE: Level 6 QF-EHEA: First Cycle EQF-LLL: Level 6

General course introduction information

Course Code: SYON251
Course Name: Sports Law
Course Semester: Fall
Course Credits:
Theoretical Practical Credit ECTS
2 0 2 4
Language of instruction: TR
Course Requisites:
Does the Course Require Work Experience?: No
Type of course: Compulsory
Course Level:
Bachelor TR-NQF-HE:6. Master`s Degree QF-EHEA:First Cycle EQF-LLL:6. Master`s Degree
Mode of Delivery: Face to face
Course Coordinator : Öğr.Gör. AYSU MELİS BAĞLAN SEVİNDİK
Course Lecturer(s): Öğr.Gör. AYSU MELİS BAĞLAN SEVİNDİK
Course Assistants:

Course Objective and Content

Course Objectives: Learns the place of Sports Law in legal science, aims to examine the principles and principles of sport dispute resolution in terms of theory and practice (event analysis).
Course Content: Evaluation and examination of legal events and facts in sports are the subjects of this course.

Learning Outcomes

The students who have succeeded in this course;
Learning Outcomes
1 - Knowledge
Theoretical - Conceptual
1) • Federative organization is recognized.
2 - Skills
Cognitive - Practical
1) • Sports disputes are solved with legal grounds.
3 - Competences
Communication and Social Competence
Learning Competence
1) • Learn the legal procedure.
Field Specific Competence
Competence to Work Independently and Take Responsibility

Lesson Plan

Week Subject Related Preparation
1) Explaining the main objectives of the course and listening to student views Review of the next lesson
2) The relationship of Sports Law with other sciences Review of the next lesson
3) Sports federations and legal status Review of the next lesson
4) Contract Law Review of the next lesson
5) Contract Law Review of the next lesson
6) Doping Review of the next lesson
7) International Court of Arbitration (CAS) Review of the next lesson
8) Legal Boards at TFF Review of the next lesson
9) MIDTERM
10) The principle of international transfer of small football players Review of the next lesson
11) Media Rights, Sponsorship and Advertising Law Review of the next lesson
12) Bosman's Decision Review of the next lesson
13) Sports law to help understand the elements Review of the next lesson
14) Review of Topics

Sources

Course Notes / Textbooks: spor Hukuku, Hasan Gerçeker, 2016
References: spor Hukuku, Hasan Gerçeker, 2016

Course-Program Learning Outcome Relationship

Learning Outcomes

1

2

3

Program Outcomes
1) Has sufficient background in mathematics, science and engineering related fields.
2) Uses the theoretical and practical knowledge in mathematics, science and their fields together for engineering solutions.
3) Identifies, formulates and solves engineering problems, selects and applies appropriate analytical methods and modeling techniques for this purpose.
4) Analyze a system, system component or process and design it under realistic constraints to meet desired requirements; apply modern design methods accordingly.
5) Selects and uses the modern techniques and tools necessary for engineering applications.
6) Design experiments, conduct experiments, collect data, analyze and interpret results.
7) Works individually and in multi-disciplinary teams.
8) Accesses information and conducts resource research for this purpose, uses databases and other information sources.
9) Accesses information and conducts resource research for this purpose, uses databases and other information sources.
10) Accesses information and conducts resource research for this purpose, uses databases and other information sources.
11) Uses the theoretical and practical knowledge in mathematics, science and their fields together for engineering solutions.
12) Identifies, formulates and solves engineering problems, selects and applies appropriate analytical methods and modeling techniques for this purpose.
13) Analyze a system, system component or process and design it under realistic constraints to meet desired requirements; apply modern design methods accordingly.
14) Selects and uses the modern techniques and tools necessary for engineering applications.
15) Works individually and in multi-disciplinary teams
16) Uses information and communication technologies together with computer software required by the field at least Advanced Level of European Computer Skills License.
17) Communicate effectively verbally and in writing; use a foreign language at least at level B1 of the European Language Portfolio.
18) Communicates using technical drawing.
19) Accesses information and conducts resource research for this purpose, uses databases and other information sources.
20) Becomes aware of the universal and social effects of engineering solutions and applications; entrepreneurship and innovation and have knowledge about the problems of the age.
21) Has professional and ethical responsibility.
22) Have awareness of project management, workplace practices, employee health, environmental and occupational safety; the legal consequences of engineering applications.
23) Demonstrates awareness of the universal and social impact of engineering solutions and applications; is aware of entrepreneurship and innovation and has knowledge about the problems of the age.

Course - Learning Outcome Relationship

No Effect 1 Lowest 2 Low 3 Average 4 High 5 Highest
           
Program Outcomes Level of Contribution
1) Has sufficient background in mathematics, science and engineering related fields.
2) Uses the theoretical and practical knowledge in mathematics, science and their fields together for engineering solutions.
3) Identifies, formulates and solves engineering problems, selects and applies appropriate analytical methods and modeling techniques for this purpose.
4) Analyze a system, system component or process and design it under realistic constraints to meet desired requirements; apply modern design methods accordingly.
5) Selects and uses the modern techniques and tools necessary for engineering applications.
6) Design experiments, conduct experiments, collect data, analyze and interpret results.
7) Works individually and in multi-disciplinary teams.
8) Accesses information and conducts resource research for this purpose, uses databases and other information sources.
9) Accesses information and conducts resource research for this purpose, uses databases and other information sources.
10) Accesses information and conducts resource research for this purpose, uses databases and other information sources.
11) Uses the theoretical and practical knowledge in mathematics, science and their fields together for engineering solutions.
12) Identifies, formulates and solves engineering problems, selects and applies appropriate analytical methods and modeling techniques for this purpose.
13) Analyze a system, system component or process and design it under realistic constraints to meet desired requirements; apply modern design methods accordingly.
14) Selects and uses the modern techniques and tools necessary for engineering applications.
15) Works individually and in multi-disciplinary teams
16) Uses information and communication technologies together with computer software required by the field at least Advanced Level of European Computer Skills License.
17) Communicate effectively verbally and in writing; use a foreign language at least at level B1 of the European Language Portfolio.
18) Communicates using technical drawing.
19) Accesses information and conducts resource research for this purpose, uses databases and other information sources.
20) Becomes aware of the universal and social effects of engineering solutions and applications; entrepreneurship and innovation and have knowledge about the problems of the age.
21) Has professional and ethical responsibility.
22) Have awareness of project management, workplace practices, employee health, environmental and occupational safety; the legal consequences of engineering applications.
23) Demonstrates awareness of the universal and social impact of engineering solutions and applications; is aware of entrepreneurship and innovation and has knowledge about the problems of the age.

Learning Activity and Teaching Methods

Field Study
Expression
Problem Solving
Q&A / Discussion
Case Study

Assessment & Grading Methods and Criteria

Written Exam (Open-ended questions, multiple choice, true-false, matching, fill in the blanks, sequencing)
Case study presentation

Assessment & Grading

Semester Requirements Number of Activities Level of Contribution
Midterms 1 % 40
Final 1 % 60
total % 100
PERCENTAGE OF SEMESTER WORK % 40
PERCENTAGE OF FINAL WORK % 60
total % 100

Workload and ECTS Credit Grading

Activities Number of Activities Workload
Course Hours 12 24
Midterms 1 1
Final 1 1
Total Workload 26