Industrial Engineering (English) | |||||
Bachelor | TR-NQF-HE: Level 6 | QF-EHEA: First Cycle | EQF-LLL: Level 6 |
Course Code: | MATH220 | ||||||||
Course Name: | Numerical Methods | ||||||||
Course Semester: | Fall | ||||||||
Course Credits: |
|
||||||||
Language of instruction: | EN | ||||||||
Course Requisites: |
MATH113 - Mathematics I | MATH131@YÜ - Calculus I |
||||||||
Does the Course Require Work Experience?: | No | ||||||||
Type of course: | Compulsory | ||||||||
Course Level: |
|
||||||||
Mode of Delivery: | Face to face | ||||||||
Course Coordinator : | Dr.Öğr.Üyesi MESERET TUBA GÜLPINAR | ||||||||
Course Lecturer(s): |
|
||||||||
Course Assistants: |
Course Objectives: | To provide the student with numerical methods of solving the non-linear equations, interpolation, differentiation, integration and differential equations. To improve the student’s skills in numerical methods by using the numerical analysis software and computer facilities. |
Course Content: | This course is designated to provide the necessary knowledge and skills in analysis of numerical methods to investigate numerical errors, Taylor’s theorem, numerical solutions of linear and nonlinear equations, interpolation and curve fitting methods, numerical differentiation and integration, numerical solutions of differential equations. |
The students who have succeeded in this course;
|
Week | Subject | Related Preparation |
1) | • Introduction to basic concepts in numerical analysis • A brief review of numerical methods and application areas • Mathematical preliminaries, error analysis • Numerical errors • Taylor's theorem | |
2) | Root Finding Methods | Lecture Notes |
3) | Root Finding Methods | Lecture Notes |
4) | Solutions of the systems of linear equations | Lecture Notes |
5) | Solutions of the Systems of Linear Equations | Lecture Notes |
6) | Curve Fitting Methods | Lecture Notes |
7) | Curve Fitting Methods | Lecture Notes |
8) | Curve Fitting Methods | Lecture Notes |
9) | ||
10) | Numerical Differentiation | Lecture Notes |
11) | Numerical Differentiation and Integration | Lecture Notes |
12) | Numerical Integration | Lecture Notes |
13) | Numerical Solutions of the Ordinary Differential Equations | Lecture Notes |
14) | Numerical Solutions of the Ordinary Differential Equations | Lecture Notes |
Course Notes / Textbooks: | Burden and Faires, Numerical Analysis (10th. Ed.) 2015 |
References: | Lecture notes Ders notu |
Learning Outcomes | 1 |
2 |
3 |
4 |
5 |
6 |
7 |
8 |
9 |
10 |
---|---|---|---|---|---|---|---|---|---|---|
Program Outcomes | ||||||||||
1) Adequate knowledge in mathematics, science and engineering subjects pertaining to the relevant discipline; ability to use theoretical and applied information in these areas to model and solve engineering problems. | ||||||||||
2) Ability to identify, formulate, and solve complex engineering problems; ability to select and apply proper analysis and modelling methods for this purpose. | ||||||||||
3) Ability to design a complex system, process, device or product under realistic constraints and conditions, in such a way so as to meet the desired result; ability to apply modern design methods for this purpose. (Realistic constraints and conditions may include factors such as economic and environmental issues, sustainability, manufacturability, ethics, health, safety issues, and social and political issues according to the nature of the design.) | ||||||||||
4) Ability to devise, select, and use modern techniques and tools needed for engineering practice; ability to employ information technologies effectively. | ||||||||||
5) Ability to design and conduct experiments, gather data, analyse and interpret results for investigating engineering problems. | ||||||||||
6) Ability to work efficiently in intra-disciplinary and multi-disciplinary teams; ability to work individually. | ||||||||||
7) Ability to communicate effectively i Turkish, both orally and in writing; knowledge of a minimum of one foreign language. | ||||||||||
8) Recognition of the need for lifelong learning; ability to access information, to follow developments in science and technology, and to continue to educate him/herself. | ||||||||||
9) Awareness of professional and ethical responsibility. | ||||||||||
10) Information about business life practices such as project management, risk management, and change management; awareness of entrepreneurship, innovation, and sustainable development. | ||||||||||
11) Knowledge about contemporary issues and the global and societal effects of engineering practices on health, environment, and safety; awareness of the legal consequences of engineering solutions. |
No Effect | 1 Lowest | 2 Low | 3 Average | 4 High | 5 Highest |
Program Outcomes | Level of Contribution | |
1) | Adequate knowledge in mathematics, science and engineering subjects pertaining to the relevant discipline; ability to use theoretical and applied information in these areas to model and solve engineering problems. | |
2) | Ability to identify, formulate, and solve complex engineering problems; ability to select and apply proper analysis and modelling methods for this purpose. | |
3) | Ability to design a complex system, process, device or product under realistic constraints and conditions, in such a way so as to meet the desired result; ability to apply modern design methods for this purpose. (Realistic constraints and conditions may include factors such as economic and environmental issues, sustainability, manufacturability, ethics, health, safety issues, and social and political issues according to the nature of the design.) | |
4) | Ability to devise, select, and use modern techniques and tools needed for engineering practice; ability to employ information technologies effectively. | |
5) | Ability to design and conduct experiments, gather data, analyse and interpret results for investigating engineering problems. | |
6) | Ability to work efficiently in intra-disciplinary and multi-disciplinary teams; ability to work individually. | |
7) | Ability to communicate effectively i Turkish, both orally and in writing; knowledge of a minimum of one foreign language. | |
8) | Recognition of the need for lifelong learning; ability to access information, to follow developments in science and technology, and to continue to educate him/herself. | |
9) | Awareness of professional and ethical responsibility. | |
10) | Information about business life practices such as project management, risk management, and change management; awareness of entrepreneurship, innovation, and sustainable development. | |
11) | Knowledge about contemporary issues and the global and societal effects of engineering practices on health, environment, and safety; awareness of the legal consequences of engineering solutions. |
Lesson | |
Homework | |
Problem Solving | |
Q&A / Discussion |
Written Exam (Open-ended questions, multiple choice, true-false, matching, fill in the blanks, sequencing) | |
Homework |
Semester Requirements | Number of Activities | Level of Contribution |
Midterms | 2 | % 50 |
Final | 1 | % 50 |
total | % 100 | |
PERCENTAGE OF SEMESTER WORK | % 50 | |
PERCENTAGE OF FINAL WORK | % 50 | |
total | % 100 |
Activities | Number of Activities | Duration (Hours) | Workload |
Course Hours | 15 | 4 | 60 |
Homework Assignments | 4 | 6 | 24 |
Midterms | 2 | 10 | 20 |
Final | 1 | 16 | 16 |
Total Workload | 120 |