PSY344 Personality Theories IIIstanbul Okan UniversityDegree Programs Food Engineering (English)General Information For StudentsDiploma SupplementErasmus Policy StatementNational Qualifications
Food Engineering (English)
Bachelor TR-NQF-HE: Level 6 QF-EHEA: First Cycle EQF-LLL: Level 6

General course introduction information

Course Code: PSY344
Course Name: Personality Theories II
Course Semester: Fall
Course Credits:
Theoretical Practical Credit ECTS
3 0 3 6
Language of instruction:
Course Requisites:
Does the Course Require Work Experience?: No
Type of course: Compulsory
Course Level:
Bachelor TR-NQF-HE:6. Master`s Degree QF-EHEA:First Cycle EQF-LLL:6. Master`s Degree
Mode of Delivery: Face to face
Course Coordinator : Dr.Öğr.Üyesi ECE TUNCAY SENLET
Course Lecturer(s):
Course Assistants:

Course Objective and Content

Course Objectives: The course evaluates the concept of personality, theories and theorists.
Course Content: Students will have theoretical knowledge about the concept of personality and the approaches of major theorists to personality development.

Learning Outcomes

The students who have succeeded in this course;
Learning Outcomes
1 - Knowledge
Theoretical - Conceptual
1) Students have a basic and comparative knowledge about the related theories.
2 - Skills
Cognitive - Practical
3 - Competences
Communication and Social Competence
Learning Competence
Field Specific Competence
Competence to Work Independently and Take Responsibility

Lesson Plan

Week Subject Related Preparation
1) Introducing the course Sharing the expectations from the course
2) • Introducing the personality theorist • Explaining the theorist's personality-specific concepts and approach to personality development
3) • Introducing the personality theorist • Explaining the theorist's personality-specific concepts and approach to personality development
4) • Introducing the personality theorist • Explaining the theorist's personality-specific concepts and approach to personality development
5) • Introducing the personality theorist • Explaining the theorist's personality-specific concepts and approach to personality development
6) • Introducing the personality theorist • Explaining the theorist's personality-specific concepts and approach to personality development
7) • Introducing the personality theorist • Explaining the theorist's personality-specific concepts and approach to personality development
8) Evaluation
9) • Introducing the personality theorist • Explaining the theorist's personality-specific concepts and approach to personality development
10) • Introducing the personality theorist • Explaining the theorist's personality-specific concepts and approach to personality development
11) • Introducing the personality theorist • Explaining the theorist's personality-specific concepts and approach to personality development
12) • Introducing the personality theorist • Explaining the theorist's personality-specific concepts and approach to personality development
13) • Introducing the personality theorist • Explaining the theorist's personality-specific concepts and approach to personality development
14) • Introducing the personality theorist • Explaining the theorist's personality-specific concepts and approach to personality development
15) • Introducing the personality theorist • Explaining the theorist's personality-specific concepts and approach to personality development
16) General summary

Sources

Course Notes / Textbooks: Burger, J. M. (2019). Personality (10th ed.). Boston, MA: Cengage Learning.

Carver, C. S., & Scheier, M. F. (2017). Perspectives on Personality (8th ed.). New York: Pearson Education.
References: Burger, J. M. (2019). Personality (10th ed.). Boston, MA: Cengage Learning.

Carver, C. S., & Scheier, M. F. (2017). Perspectives on Personality (8th ed.). New York: Pearson Education.

Course-Program Learning Outcome Relationship

Learning Outcomes

1

Program Outcomes
1) Has sufficient background in mathematics, science and engineering related fields.
2) Uses the theoretical and practical knowledge in mathematics, science and their fields together for engineering solutions.
3) Identifies, formulates and solves engineering problems, selects and applies appropriate analytical methods and modeling techniques for this purpose.
4) Analyze a system, system component or process and design it under realistic constraints to meet desired requirements; apply modern design methods accordingly.
5) Selects and uses the modern techniques and tools necessary for engineering applications.
6) Design experiments, conduct experiments, collect data, analyze and interpret results.
7) Works individually and in multi-disciplinary teams.
8) Accesses information and conducts resource research for this purpose, uses databases and other information sources.
9) Accesses information and conducts resource research for this purpose, uses databases and other information sources.
10) Accesses information and conducts resource research for this purpose, uses databases and other information sources.
11) Uses the theoretical and practical knowledge in mathematics, science and their fields together for engineering solutions.
12) Identifies, formulates and solves engineering problems, selects and applies appropriate analytical methods and modeling techniques for this purpose.
13) Analyze a system, system component or process and design it under realistic constraints to meet desired requirements; apply modern design methods accordingly.
14) Selects and uses the modern techniques and tools necessary for engineering applications.
15) Works individually and in multi-disciplinary teams
16) Uses information and communication technologies together with computer software required by the field at least Advanced Level of European Computer Skills License.
17) Communicate effectively verbally and in writing; use a foreign language at least at level B1 of the European Language Portfolio.
18) Communicates using technical drawing.
19) Accesses information and conducts resource research for this purpose, uses databases and other information sources.
20) Becomes aware of the universal and social effects of engineering solutions and applications; entrepreneurship and innovation and have knowledge about the problems of the age.
21) Has professional and ethical responsibility.
22) Have awareness of project management, workplace practices, employee health, environmental and occupational safety; the legal consequences of engineering applications.
23) Demonstrates awareness of the universal and social impact of engineering solutions and applications; is aware of entrepreneurship and innovation and has knowledge about the problems of the age.

Course - Learning Outcome Relationship

No Effect 1 Lowest 2 Low 3 Average 4 High 5 Highest
           
Program Outcomes Level of Contribution
1) Has sufficient background in mathematics, science and engineering related fields.
2) Uses the theoretical and practical knowledge in mathematics, science and their fields together for engineering solutions.
3) Identifies, formulates and solves engineering problems, selects and applies appropriate analytical methods and modeling techniques for this purpose.
4) Analyze a system, system component or process and design it under realistic constraints to meet desired requirements; apply modern design methods accordingly.
5) Selects and uses the modern techniques and tools necessary for engineering applications.
6) Design experiments, conduct experiments, collect data, analyze and interpret results.
7) Works individually and in multi-disciplinary teams.
8) Accesses information and conducts resource research for this purpose, uses databases and other information sources.
9) Accesses information and conducts resource research for this purpose, uses databases and other information sources.
10) Accesses information and conducts resource research for this purpose, uses databases and other information sources.
11) Uses the theoretical and practical knowledge in mathematics, science and their fields together for engineering solutions.
12) Identifies, formulates and solves engineering problems, selects and applies appropriate analytical methods and modeling techniques for this purpose.
13) Analyze a system, system component or process and design it under realistic constraints to meet desired requirements; apply modern design methods accordingly.
14) Selects and uses the modern techniques and tools necessary for engineering applications.
15) Works individually and in multi-disciplinary teams
16) Uses information and communication technologies together with computer software required by the field at least Advanced Level of European Computer Skills License.
17) Communicate effectively verbally and in writing; use a foreign language at least at level B1 of the European Language Portfolio.
18) Communicates using technical drawing.
19) Accesses information and conducts resource research for this purpose, uses databases and other information sources.
20) Becomes aware of the universal and social effects of engineering solutions and applications; entrepreneurship and innovation and have knowledge about the problems of the age.
21) Has professional and ethical responsibility.
22) Have awareness of project management, workplace practices, employee health, environmental and occupational safety; the legal consequences of engineering applications.
23) Demonstrates awareness of the universal and social impact of engineering solutions and applications; is aware of entrepreneurship and innovation and has knowledge about the problems of the age.

Learning Activity and Teaching Methods

Assessment & Grading Methods and Criteria

Written Exam (Open-ended questions, multiple choice, true-false, matching, fill in the blanks, sequencing)

Assessment & Grading

Semester Requirements Number of Activities Level of Contribution
Attendance 12 % 10
Midterms 1 % 40
Final 1 % 50
total % 100
PERCENTAGE OF SEMESTER WORK % 50
PERCENTAGE OF FINAL WORK % 50
total % 100

Workload and ECTS Credit Grading

Activities Number of Activities Duration (Hours) Workload
Course Hours 16 3 48
Study Hours Out of Class 16 3 48
Presentations / Seminar 3 9 27
Homework Assignments 3 12 36
Midterms 3 9 27
Final 1 3 3
Total Workload 189