PSY415 Neuropsychological Tests IIstanbul Okan UniversityDegree Programs Food Engineering (English)General Information For StudentsDiploma SupplementErasmus Policy StatementNational Qualifications
Food Engineering (English)
Bachelor TR-NQF-HE: Level 6 QF-EHEA: First Cycle EQF-LLL: Level 6

General course introduction information

Course Code: PSY415
Course Name: Neuropsychological Tests I
Course Semester: Fall
Course Credits:
Theoretical Practical Credit ECTS
2 2 3 6
Language of instruction: TR-EN
Course Requisites:
Does the Course Require Work Experience?: No
Type of course: University Elective
Course Level:
Bachelor TR-NQF-HE:6. Master`s Degree QF-EHEA:First Cycle EQF-LLL:6. Master`s Degree
Mode of Delivery: Face to face
Course Coordinator : Dr.Öğr.Üyesi ZEYNEP HALE AKSUNA
Course Lecturer(s):
Course Assistants:

Course Objective and Content

Course Objectives: The aim of this course is to introduce the neuropsychology and its branches, the basic techniques and approaches, the neuropsychological assessment field and the stages of the neuropsychological test standardization; teaching some of the neuropsychological tests’ application and scoring; explaining the cognitive processes that neuropsychological tests measure.
Course Content: This course includes neuropsychological tests, materials, instructions, forms of administration and scoring, and applying and scoring the relevant test to students.

Learning Outcomes

The students who have succeeded in this course;
Learning Outcomes
1 - Knowledge
Theoretical - Conceptual
1) To know the general aspects of neuropsychology.
2) To know the basic techniques and approaches of neuropsychology.
3) To apply and score some neuropsychological tests.
4) To know the neuropsychological profiles in various neuropsychiatric diseases.
5) To have information about how the results obtained can be used for the benefit of patients together with experts from other disciplines.
2 - Skills
Cognitive - Practical
3 - Competences
Communication and Social Competence
Learning Competence
Field Specific Competence
Competence to Work Independently and Take Responsibility

Lesson Plan

Week Subject Related Preparation
1) Beginning of Courses/ Introduction Lecturer's notes and related articles
2) Psychometrics in Neuropsychological Assessment Lecturer's notes and related articles
3) Norms Selection in Neuropsychological Assessment Lecturer's notes and related articles
4) Story Retrieval Lecturer's notes and related articles
5) Story Retrieval Lecturer's notes and related articles
6) To introduce and explain the theoretical framework and application of the Stroop Test Lecturer's notes and related articles
7) Introducing and explaining the Stroop Test's administration and scoring system Lecturer's notes and related articles
8) Midterm None
9) To introduce and explain the theoretical framework and application of the Marking Test Lecturer's notes and related articles
10) Introduce and explain the application form and scoring system of the Marking Test Lecturer's notes and related articles
11) Introducing and explaining the theoretical framework and application of the Raven Test Lecturer's notes and related articles
12) Introducing and explaining the Raven Test's administration and scoring system Lecturer's notes and related articles
13) To introduce and explain the theoretical framework and application of the Wisconsin Card Matching Test. Lecturer's notes and related articles
14) Introduce and explain the administration and scoring system of the Wisconsin Card Sorting Test Lecturer's notes and related articles
15) Review Lecturer's notes and related articles
16) Final Lecturer's notes and related articles

Sources

Course Notes / Textbooks: Kolb, B. & Whishaw, I.Q. (2015). Fundamentals of Human Neuropsychology, sixth Edition. Worth Publishers
References: Kolb, B. & Whishaw, I.Q. (2015). Fundamentals of Human Neuropsychology, sixth Edition. Worth Publishers

Course-Program Learning Outcome Relationship

Learning Outcomes

1

2

3

4

5

Program Outcomes
1) Has sufficient background in mathematics, science and engineering related fields.
2) Uses the theoretical and practical knowledge in mathematics, science and their fields together for engineering solutions.
3) Identifies, formulates and solves engineering problems, selects and applies appropriate analytical methods and modeling techniques for this purpose.
4) Analyze a system, system component or process and design it under realistic constraints to meet desired requirements; apply modern design methods accordingly.
5) Selects and uses the modern techniques and tools necessary for engineering applications.
6) Design experiments, conduct experiments, collect data, analyze and interpret results.
7) Works individually and in multi-disciplinary teams.
8) Accesses information and conducts resource research for this purpose, uses databases and other information sources.
9) Accesses information and conducts resource research for this purpose, uses databases and other information sources.
10) Accesses information and conducts resource research for this purpose, uses databases and other information sources.
11) Uses the theoretical and practical knowledge in mathematics, science and their fields together for engineering solutions.
12) Identifies, formulates and solves engineering problems, selects and applies appropriate analytical methods and modeling techniques for this purpose.
13) Analyze a system, system component or process and design it under realistic constraints to meet desired requirements; apply modern design methods accordingly.
14) Selects and uses the modern techniques and tools necessary for engineering applications.
15) Works individually and in multi-disciplinary teams
16) Uses information and communication technologies together with computer software required by the field at least Advanced Level of European Computer Skills License.
17) Communicate effectively verbally and in writing; use a foreign language at least at level B1 of the European Language Portfolio.
18) Communicates using technical drawing.
19) Accesses information and conducts resource research for this purpose, uses databases and other information sources.
20) Becomes aware of the universal and social effects of engineering solutions and applications; entrepreneurship and innovation and have knowledge about the problems of the age.
21) Has professional and ethical responsibility.
22) Have awareness of project management, workplace practices, employee health, environmental and occupational safety; the legal consequences of engineering applications.
23) Demonstrates awareness of the universal and social impact of engineering solutions and applications; is aware of entrepreneurship and innovation and has knowledge about the problems of the age.

Course - Learning Outcome Relationship

No Effect 1 Lowest 2 Low 3 Average 4 High 5 Highest
           
Program Outcomes Level of Contribution
1) Has sufficient background in mathematics, science and engineering related fields.
2) Uses the theoretical and practical knowledge in mathematics, science and their fields together for engineering solutions.
3) Identifies, formulates and solves engineering problems, selects and applies appropriate analytical methods and modeling techniques for this purpose.
4) Analyze a system, system component or process and design it under realistic constraints to meet desired requirements; apply modern design methods accordingly.
5) Selects and uses the modern techniques and tools necessary for engineering applications.
6) Design experiments, conduct experiments, collect data, analyze and interpret results.
7) Works individually and in multi-disciplinary teams.
8) Accesses information and conducts resource research for this purpose, uses databases and other information sources.
9) Accesses information and conducts resource research for this purpose, uses databases and other information sources.
10) Accesses information and conducts resource research for this purpose, uses databases and other information sources.
11) Uses the theoretical and practical knowledge in mathematics, science and their fields together for engineering solutions.
12) Identifies, formulates and solves engineering problems, selects and applies appropriate analytical methods and modeling techniques for this purpose.
13) Analyze a system, system component or process and design it under realistic constraints to meet desired requirements; apply modern design methods accordingly.
14) Selects and uses the modern techniques and tools necessary for engineering applications.
15) Works individually and in multi-disciplinary teams
16) Uses information and communication technologies together with computer software required by the field at least Advanced Level of European Computer Skills License.
17) Communicate effectively verbally and in writing; use a foreign language at least at level B1 of the European Language Portfolio.
18) Communicates using technical drawing.
19) Accesses information and conducts resource research for this purpose, uses databases and other information sources.
20) Becomes aware of the universal and social effects of engineering solutions and applications; entrepreneurship and innovation and have knowledge about the problems of the age.
21) Has professional and ethical responsibility.
22) Have awareness of project management, workplace practices, employee health, environmental and occupational safety; the legal consequences of engineering applications.
23) Demonstrates awareness of the universal and social impact of engineering solutions and applications; is aware of entrepreneurship and innovation and has knowledge about the problems of the age.

Learning Activity and Teaching Methods

Expression
Brainstorming/ Six tihnking hats
Individual study and homework
Lesson
Reading
Homework
Q&A / Discussion

Assessment & Grading Methods and Criteria

Written Exam (Open-ended questions, multiple choice, true-false, matching, fill in the blanks, sequencing)
Homework
Application
Individual Project
Presentation
Reporting

Assessment & Grading

Semester Requirements Number of Activities Level of Contribution
Application 1 % 10
Homework Assignments 2 % 15
Presentation 1 % 15
Midterms 1 % 20
Final 1 % 40
total % 100
PERCENTAGE OF SEMESTER WORK % 60
PERCENTAGE OF FINAL WORK % 40
total % 100

Workload and ECTS Credit Grading

Activities Number of Activities Duration (Hours) Workload
Course Hours 3 9 27
Presentations / Seminar 1 20 20
Homework Assignments 2 20 40
Midterms 1 24 24
Paper Submission 1 20 20
Final 1 48 48
Total Workload 179